1
|
Duan XJ, Tao YF, Hua J, Wang QC, Qiang J. Biochemical indices, histological observations and transcriptome sequencing reveal the response mechanism of largemouth bass (Micropterus salmoides) to transport stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101514. [PMID: 40262240 DOI: 10.1016/j.cbd.2025.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/20/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
In this study, transport conditions were simulated to investigate changes in intestinal tissue structure, oxidative stress, apoptosis and transcriptome levels during transport stress of largemouth bass (Micropterus salmoides). The results showed that the serum cortisol and lactic acid levels in largemouth bass significantly increased with increasing transport time, and the glucose content peaked after 8 h of transport. After 8 h and 12 h, the Reactive oxygen species, superoxide dismutase, malondialdehyde, and lipid peroxide contents in the intestine were significantly higher than those in the control group and the stressed group at 4 h. Additionally, more of the mucous membrane of intestinal tissue was exfoliated, resulting in edema, and the intestinal villi height and density significantly decreased. The differentially expressed genes were further analyzed after 0 h, 8 h, and 12 h of transport stress. There were significant differences in genes associated with the p53 signaling pathway (igfbp1a, ccnb1, cdk1, and igfbp6b) and apoptosis (bcl2l11, parp3, pik3r1, fadd, aifm1, and lmnb1). Combined with the increasing amount of apoptotic cells after stress, these results indicated that transport stress had a substantial effect on intestinal cell apoptosis. The intestinal antioxidant activity and tissue structure of the stressed groups recovered to the pre-stress level after 7 d of recovery from 8 h of transport; however, these parameters did not return to pre-stress levels after 7 d of recovery from 12 h of transport. This finding further demonstrated that long-term transport stress induced apoptosis and tissue damage in the largemouth bass intestine through p53 signaling.
Collapse
Affiliation(s)
- Xue Jun Duan
- Adult Education College, Wuxi Institute of Technology, Wuxi 223300, Jiangsu, China
| | - Yi Fan Tao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Jixiang Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China
| | - Qing Chun Wang
- Suzhou Aquatic Technology Extension Station, Suzhou 215004, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
2
|
Qian YX, Zhou FF, Chen Q, Dong F, Xu HY, Sun YL, Wang JT, Han T. Arginine alleviates LPS-induced leukocytes inflammation and apoptosis via adjusted NODs signaling. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109985. [PMID: 39461398 DOI: 10.1016/j.fsi.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Arginine plays a key role in regulating the immune function of fish. To evaluate the effect of arginine on the immune response of largemouth bass (Micropterus salmoides), the effects of arginine on cell viability, NADPH oxidase activity, respiratory burst activity, and NO production of leukocytes were analyzed both in vitro and in vivo. In this study, we found that arginine could promote the respiratory burst activity of leucocytes both in vivo and in vitro. By incubating leukocytes with the combination of LPS and arginine, we found that arginine supplementation inhibited the expression of inflammatory genes (tumor necrosis factor-alpha, tnfα; interleukin(il) 8 and il10) and apoptotic genes (caspase 3, caspase 8, and caspase 9) induced by LPS, as well as promoted the arginine metabolism. Arginine supplementation significantly induced (cd4-like) cd4 gene expression after LPS challenge. Further studies showed that LPS could significantly increase nucleotide-binding oligomerization domain containing 1 (nod1) gene expression, but decreased the nod2 gene. The arginine supplementation increased nuclear factor kappa-B (NF-κB) protein level. In conclusion, arginine can alleviate LPS-induced inflammatory response and apoptosis as well as induce cd4 gene expression against LPS challenge via adjusting the expression of NODs signaling.
Collapse
Affiliation(s)
- Yuan-Xin Qian
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feng-Feng Zhou
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiang Chen
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fen Dong
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Han-Ying Xu
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yu-Long Sun
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ji-Teng Wang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
3
|
Jiang W, Lin Y, Qian L, Lu S, Shen H, Ge X, Miao L. Mulberry Leaf Polysaccharides Attenuate Oxidative Stress Injury in Peripheral Blood Leukocytes by Regulating Endoplasmic Reticulum Stress. Antioxidants (Basel) 2024; 13:136. [PMID: 38397734 PMCID: PMC10886326 DOI: 10.3390/antiox13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
The present study assessed the protective effects and underlying mechanisms of mulberry leaf polysaccharides (MLPs) against hydrogen peroxide (H2O2)-induced oxidative stress injury in the peripheral blood leukocytes (PBLs) of Megalobrama amblycephala. Five treatment groups were established in vitro: the NC group (PBLs incubated in an RPMI-1640 complete medium for 4 h), the HP group (PBLs incubated in an RPMI-1640 complete medium for 3 h, and then stimulated with 100 μM of H2O2 for 1 h), and the 50/100/200-MLP pre-treatment groups (PBLs were pre-treated with MLPs (50, 100, and 200 μg/mL) for 3 h, and then stimulated with 100 μM of H2O2 for 1 h). The results showed that MLP pre-treatment dose-dependently enhanced PBLs' antioxidant capacities. The 200 μg/mL MLP pre-treatment effectively protected the antioxidant system of PBLs from H2O2-induced oxidative damage by reducing the malondialdehyde content and lactic dehydrogenase cytotoxicity, and increasing catalase and superoxide dismutase activities (p < 0.05). The over-production of reactive oxygen species, depletion of nicotinamide adenine dinucleotide phosphate, and collapse of the mitochondrial membrane potential were significantly inhibited in the 200-MLP pre-treatment group (p < 0.05). The expressions of endoplasmic reticulum stress-related genes (forkhead box O1α (foxO1α), binding immunoglobulin protein (bip), activating transcription factor 6 (atf6), and C/EBP-homologous protein (chop)), Ca2+ transport-related genes (voltage-dependent anion-selective channel 1 (vdac1), mitofusin 2 (mfn2), and mitochondrial Ca2+ uniporter (mcu)), and interleukin 6 (il-6) and bcl2-associated x (bax) were significantly lower in the 200-MLP pre-treatment group than in the HP group (p < 0.05), which rebounded to normal levels in the NC group (p > 0.05). These results indicated that MLP pre-treatment attenuated H2O2-induced PBL oxidative damage in the M. amblycephala by inhibiting endoplasmic reticulum stress and maintaining mitochondrial function. These findings also support the possibility that MLPs can be exploited as a natural dietary supplement for M. amblycephala, as they protect against oxidative damage.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Siyue Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| |
Collapse
|
4
|
Xu C, Li XF, Gao LL, Ding ZR, Huang XP, Li YY, Xie DZ. Molecular characterization of thioredoxin-interacting protein (TXNIP) from Megalobrama amblycephala and its potential roles in high glucose-induced inflammatory response. Int J Biol Macromol 2021; 188:460-472. [PMID: 34391784 DOI: 10.1016/j.ijbiomac.2021.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to characterize the full-length cDNA of thioredoxin-interacting protein (TXNIP) from Megalobrama amblycephala, and investigate its roles in high glucose (HC)-induced inflammatory response. The cDNA obtained covered 2706-bp with an open reading frame of 1203-bp encoding 400 amino acids, compared to Cyprinus carpio, it showed 89.96% homology. The highest expression of txnip was observed in head kidney followed by spleen and liver. After a 12-week feeding trial, high-carbohydrate diet remarkably increased txnip expression in liver and white muscle. Glucose administration resulted in a remarkably increased liver txnip expression, which peaked at 1 h. Thereafter, the expression decreased remarkably to the basal value at 12 h. However, insulin injection resulted in a significant decrease in txnip expression with minimum values attained at 2 h. Subsequently, it gradually increased to the normal values. Moreover, in the in-vitro study, over-expression of txnip along with remarkably increased il-1β and il-6 expression in hepatocytes, and its knockdown led to remarkably reduced il-1β expression. Furthermore, metformin treatment remarkably increased the cell viability and trx expression of hepatocytes under high glucose, while the opposite was true for ROS levels, LDH activity, the ALT/AST ratio, Txnip protein content and the transcriptions of txnip, tnfα and il-1β.
Collapse
Affiliation(s)
- Chao Xu
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Liu-Ling Gao
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhi-Rong Ding
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Ping Huang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan-You Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Di-Zhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Xu C, Liu WB, Remø SC, Wang BK, Shi HJ, Zhang L, Liu JD, Li XF. Feeding restriction alleviates high carbohydrate diet-induced oxidative stress and inflammation of Megalobrama amblycephala by activating the AMPK-SIRT1 pathway. FISH & SHELLFISH IMMUNOLOGY 2019; 92:637-648. [PMID: 31271836 DOI: 10.1016/j.fsi.2019.06.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of restricted feeding on the growth performance, oxidative stress and inflammation of Megalobrama amblycephala fed high-carbohydrate (HC) diets. Fish (46.94 ± 0.04 g) were randomly assigned to four groups containing the satiation of a control diet (30% carbohydrate) and three satiate levels (100% (HC1), 80% (HC2) and 60% (HC3)) of the HC diets (43% carbohydrate) for 8 weeks. Results showed that HC1 diet remarkably decreased final weight (FW), weight gain rate (WGR), specific growth rate (SGR), feed conversion ratio (FCR), hepatic activities of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and catalase (CAT), the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, sirtuin-1 (SIRT1) protein expression and hepatic transcriptions of AMPKα2, SIRT1, nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), manganese superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1) and interleukin10 (IL 10) compared to the control group, whereas the opposite was true for protein efficiency ratio (PER), nitrogen retention efficiency (NRE), energy retention efficiency (ERE), plasma glucose levels, alanine transaminase (AST) and aspartate aminotransferase (ALT) activities, hepatic contents of malondialdehyde (MDA), tumour necrosis factor α (TNF α) and interleukin 1β (IL 1β), ATP and AMP contents and hepatic transcriptions of kelch-like ECH associating protein 1 (Keap1), IkB kinase α (IKK α), nuclear factor kappa B (NF-κB), TNF α, IL 1β, interleukin 6 (IL 6) and transforming growth factor β (TGF β). As for the HC groups, fish fed the HC2 diet obtained relatively high values of SGR, PER, NRE, ERE, hepatic activities of T-AOC, SOD and CAT, the AMP/ATP ratio, the p-AMPKα/t-AMPKα ratio, SIRT1 protein expression and hepatic transcriptions of AMPKα2, Nrf2, CAT, copper/zinc superoxide dismutase (Cu/Zn-SOD), Mn-SOD, GPx1, glutathione S-transferase (GST) and interleukin10 (IL 10), while the opposite was true for hepatic content of IL 6 and transcription of IKK α. Overall, an 80% satiation improved the growth performance and alleviated the oxidative stress and inflammation of blunt snout bream fed HC diets via the activation of the AMPK-SIRT1 pathway and the up-regulation of the activities and transcriptions of Nrf2-modulated antioxidant enzymes coupled with the depression of the levels and transcriptions of the NF-κB-mediated pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Sofie Charlotte Remø
- Department of Requirement and Welfare, Institute of Marine Research, Bergen, Norway
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jia-Dai Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
6
|
Lin ST, Teng LZ, Lin Y, Miao LH, Ge XP, Hao JY, Huang X, Liu B. Molecular and functional characterization of sirt4 and sirt6 in Megalobrama amblycephala under high glucose metabolism. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:87-97. [DOI: 10.1016/j.cbpb.2019.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/06/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
|