1
|
Shao L, Zhang M, Liu Y, Peng J, Zhang X, He L. Fish Rhbdd3 positively regulates IFN response through RIG-I signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109102. [PMID: 37758095 DOI: 10.1016/j.fsi.2023.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Rhomboid domain-containing protein 3 (Rhbdd3) is a member of the rhomboid family, which can modulate the innate immune response in mammals. Nonetheless, the function and regulatory mechanism of fish Rhbdd3 during viral infection have not been characterized. In this study, Rhbdd3 was firstly cloned from common carp (Cyprinus carpio) and nominated as CcRhbdd3. Phylogenetically characterization showed that CcRhbdd3 shared a relatively long evolutionary distance with its mammalian homologs. In vivo experiment demonstrated that spring viraemia of carp virus (SVCV) infection promoted the expression of CcRhbdd3 in the liver, spleen, kidney and muscle tissues. Furthermore, overexpression of CcRhbdd3 significantly inhibited SVCV propagation, whereas knockdown of CcRhbdd3 markedly promoted SVCV replication in susceptible cells. RNA-seq and following validation showed that CcRhbdd3 overexpression upregulated the expression of several RIG-I signaling related genes, including TRIM25, TRAF2, MDA5, LGP2, IFN1, IFN3, RIG-I, IRF3 and ISG15. Moreover, CcRhbdd3 promoted the expression of NF-κB, a central immune regulator. Subcellular localization experiments showed that CcRhbdd3 was primarily distributed in the cytoplasm and co-localized with Rab5 in the early endosomes. Truncation experiments further demonstrated that the C-terminus containing the ubiquitin-binding associated domain, was crucial for both the subcellular localization and antiviral activity of CcRhbdd3. The findings in this study provide new insight into the host antiviral mechanism against aquatic RNA virus infection, and will facilitate the development of therapeutic strategies for the infection of SVCV.
Collapse
Affiliation(s)
- Ling Shao
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China.
| | - Minghui Zhang
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Yanan Liu
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Junhui Peng
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Xiaoming Zhang
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| | - Lan He
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, Shanghai, 200433, China
| |
Collapse
|
2
|
Yu X, Xiao Z, Xie J, Xu H. Ferritin Is Secreted from Primary Cultured Astrocyte in Response to Iron Treatment via TRPML1-Mediated Exocytosis. Cells 2023; 12:2519. [PMID: 37947597 PMCID: PMC10650167 DOI: 10.3390/cells12212519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Impaired iron homeostasis has been proven to be one of the critical contributors to the pathology of Parkinson's disease (PD). Ferritin is considered an intracellular protein responsible for storing cytosolic iron. Recent studies have found that ferritin can be secreted from cells independent of the classical endoplasmic reticulum-Golgi system. However, the precise mechanisms underlying the secretion of ferritin in the brain were not elucidated. In the present study, we demonstrated that the primary cultured astrocytes do have the ability to secrete ferritin, which is enhanced by iron treatment. Increased ferritin secretion was accompanied by increased protein expression of ferritin response to iron stimulation. Further study showed that iron-induced expression and secretion of ferritin could be inhibited by CQ or 3-MA pretreatment. In addition, the knockdown of transient receptor potential mucolipin 1 (TRPML1) antagonized iron-induced ferritin secretion, accompanied by further increased intracellular protein levels of ferritin. Further study demonstrated that ferritin colocalized with LAMP1 in iron-treated astrocytes. On the contrary, ras-associated protein 27a (Rab27a) knockdown further enhanced iron-induced ferritin secretion and decreased intracellular protein levels of ferritin. Furthermore, we also showed that the secretory autophagy protein tripartite motif containing 16 (TRIM16) and sec22b decreased in iron-treated astrocytes. These results suggested that astrocytes might secrete ferritin via TRPML1-mediated exocytosis. This provides new evidence for the mechanisms underlying the secretion of ferritin in primary cultured astrocytes under a high iron environment.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| |
Collapse
|
3
|
Evidence of the Autophagic Process during the Fish Immune Response of Skeletal Muscle Cells against Piscirickettsia salmonis. Animals (Basel) 2023; 13:ani13050880. [PMID: 36899738 PMCID: PMC10000225 DOI: 10.3390/ani13050880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Autophagy is a fundamental cellular process implicated in the health of the cell, acting as a cytoplasmatic quality control machinery by self-eating unfunctional organelles and protein aggregates. In mammals, autophagy can participate in the clearance of intracellular pathogens from the cell, and the activity of the toll-like receptors mediates its activation. However, in fish, the modulation of autophagy by these receptors in the muscle is unknown. This study describes and characterizes autophagic modulation during the immune response of fish muscle cells after a challenge with intracellular pathogen Piscirickettsia salmonis. For this, primary cultures of muscle cells were challenged with P. salmonis, and the expressions of immune markers il-1β, tnfα, il-8, hepcidin, tlr3, tlr9, mhc-I and mhc-II were analyzed through RT-qPCR. The expressions of several genes involved in autophagy (becn1, atg9, atg5, atg12, lc3, gabarap and atg4) were also evaluated with RT-qPCR to understand the autophagic modulation during an immune response. In addition, LC3-II protein content was measured via Western blot. The challenge of trout muscle cells with P. salmonis triggered a concomitant immune response to the activation of the autophagic process, suggesting a close relationship between these two processes.
Collapse
|
4
|
Christapher PV, Ganeson T, Chinni SV, Parasuraman S. Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspectives. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Department of Pharmacology, Al Shifa College of Pharmacy, Poothavanam post, Kizhattur, Perinthalmanna, Malappuram District, Kerala, India
| | - Thanapakiam Ganeson
- Department of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
5
|
Gao S, Liu X, Han B, Wang N, Lv X, Guan X, Xu G, Huang J, Shi W, Liu M. Salmonid alphavirus non-structural protein 2 is a key protein that activates the NF-κB signaling pathway to mediate inflammatory responses. FISH & SHELLFISH IMMUNOLOGY 2022; 129:182-190. [PMID: 36058437 DOI: 10.1016/j.fsi.2022.08.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Salmonid alphavirus (SAV) infection of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) causes pancreas disease (PD) with typical inflammatory responses, such as necrosis of the exocrine pancreas, cardiomyopathy and skeletal myopathy. However, the pathogenic mechanism underlying SAV infection is still unclear. Inflammation may cause damage to the body, but it is a defense response against infection by pathogenic microorganisms, of which nuclear factor-kappa B (NF-κB) is the main regulator. This study revealed that SAV can activate NF-κB, of which the viral nonstructural protein Nsp2 is the major activating protein. SAV activates the NF-κB signaling pathway by simultaneously up-regulating TLR3, 7, 8 and then the expression of the signaling molecule myeloid differentiation factor 88 (Myd88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). We found that Nsp2 can induce IκB degradation and p65 phosphorylation and transnucleation, and activate NF-κB downstream inflammatory cytokines. Nsp2 may simultaneously activate NF-κB through TLR3,7,8-dependent signaling pathways. Overexpression of Nsp2 can up-regulate mitochondrial antiviral signaling protein (MAVS) and then promote the expression of IFNa1 and antiviral protein Mx, which inhibits viral replication. This study shows that Nsp2 acts as a key activator protein for the NF-κB signaling pathway, which induces inflammation post-SAV infection. This study systematically analyzes the molecular mechanism of SAV activation of the NF-κB signaling pathway, and provides a theoretical basis for revealing the mechanism of innate immune response and inflammatory injury caused by SAV.
Collapse
Affiliation(s)
- Shuai Gao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuefei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Bing Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Na Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaonan Lv
- Beijing Aquaculture Technology Extention Station, Beijing, 100176, People's Republic of China
| | - Xueting Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Gefeng Xu
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, People's Republic of China
| | - Jinshan Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wen Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Min Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
6
|
Zhu L, Yuan G, Wang X, Zhao T, Hou L, Li C, Jiang X, Zhang J, Zhao X, Pei C, Li L, Kong X. Molecular characterization of Rab7 and its involvement in innate immunity in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2022; 127:318-328. [PMID: 35718290 DOI: 10.1016/j.fsi.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Rab7 is a member of the Rab GTPases protein family, and it plays an essential role in regulating trafficking organelles in higher animals. However, recent studies showed that it also participated in the immune response and cytophagy against pathogens in invertebrates. In the present study, the full-length of Rab7 from Procambarus clarkii (PcRab7) was cloned, and its function during pathogen infection and phagocytosis of haemocytes was also explored. The results showed that the full-length of PcRab7 was 3639 bp, containing a 618 bp open reading frame encoding 155 amino acids. The predicted molecular weight and isoelectric point of PcRab7 were 23.2 kDa and 5.77, respectively. PcRab7 was widely expressed in various tissues including haemocytes, intestine, muscle, gill, and hepatopancreas, and the highest expression level was in haemocytes. The mRNA transcripts of PcRab7 in the main organs (gill, intestine, and hepatopancreas, and haemocytes) were significantly affected by white spot syndrome virus (WSSV) and Aeromonas veronii infection. Subsequently, the prokaryotic and eukaryotic expression vectors were successfully constructed, and polyclonal antibodies, which could specifically recognize the endogenous Rab7 protein, were also obtained. Furthermore, the phagocytosis rate of haemocytes against FITC-labeled A. veronii was significantly decreased when the PcRab7 was silenced, while the over-expression of Rab7 increased the phagocytosis rate of haemocytes. The abnormal expression of Rab7 protein could also affect the survival rate of P. clarkii infected with WSSV or A. veronii. These results could provide a basis for further study on the immunological function of PcRab7.
Collapse
Affiliation(s)
- Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Tong Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Pérez-Stuardo D, Espinoza A, Tapia S, Morales-Reyes J, Barrientos C, Vallejos-Vidal E, Sandino AM, Spencer E, Toro-Ascuy D, Rivas-Pardo JA, Reyes-López FE, Reyes-Cerpa S. Non-Specific Antibodies Induce Lysosomal Activation in Atlantic Salmon Macrophages Infected by Piscirickettsia salmonis. Front Immunol 2020; 11:544718. [PMID: 33281810 PMCID: PMC7688784 DOI: 10.3389/fimmu.2020.544718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Piscirickettsia salmonis, an aggressive intracellular pathogen, is the etiological agent of salmonid rickettsial septicemia (SRS). This is a chronic multisystemic disease that generates high mortalities and large losses in Chilean salmon farming, threatening the sustainability of the salmon industry. Previous reports suggest that P. salmonis is able to survive and replicate in salmonid macrophages, inducing an anti-inflammatory environment and a limited lysosomal response that may be associated with host immune evasion mechanisms favoring bacterial survival. Current control and prophylaxis strategies against P. salmonis (based on the use of antibiotics and vaccines) have not had the expected success against infection. This makes it urgent to unravel the host-pathogen interaction to develop more effective therapeutic strategies. In this study, we evaluated the effect of treatment with IgM-beads on lysosomal activity in Atlantic salmon macrophage-enriched cell cultures infected with P. salmonis by analyzing the lysosomal pH and proteolytic ability through confocal microscopy. The impact of IgM-beads on cytotoxicity induced by P. salmonis in infected cells was evaluated by quantification of cell lysis through release of Lactate Dehydrogenase (LDH) activity. Bacterial load was determined by quantification of 16S rDNA copy number by qPCR, and counting of colony-forming units (CFU) present in the extracellular and intracellular environment. Our results suggest that stimulation with antibodies promotes lysosomal activity by lowering lysosomal pH and increasing the proteolytic activity within this organelle. Additionally, incubation with IgM-beads elicits a decrease in bacterial-induced cytotoxicity in infected Atlantic salmon macrophages and reduces the bacterial load. Overall, our results suggest that stimulation of cells infected by P. salmonis with IgM-beads reverses the modulation of the lysosomal activity induced by bacterial infection, promoting macrophage survival and bacterial elimination. This work represents a new important evidence to understand the bacterial evasion mechanisms established by P. salmonis and contribute to the development of new effective therapeutic strategies against SRS.
Collapse
Affiliation(s)
- Diego Pérez-Stuardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Allison Espinoza
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sebastián Tapia
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | | | - Claudio Barrientos
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain.,Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ana M Sandino
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile.,Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Eugenio Spencer
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile.,Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Toro-Ascuy
- Laboratorio de Virología, Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - J Andrés Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|