1
|
Guo M, Peng R, Jin K, Zhang X, Mo H, Li X, Qu F, Tang J, Cao S, Zhou Y, He Z, Mao Z, Fan J, Li J, Liu Z. Effects of Aeromonas infection on the immune system, physical barriers and microflora structure in the intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109790. [PMID: 39059563 DOI: 10.1016/j.fsi.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Grass carp (Ctenopharyngodon idella) is an intensively cultured and economically important herbivorous fish species in China, but its culture is often impacted by Aeromonas pathogens such as Aeromonas hydrophila and Aeromonas veronii. In this study, healthy grass carp were separately infected with A. hydrophila or A. veronii for 12, 24, 48 or 72 h. The results showed that the mRNA expression levels of intestinal inflammatory factors (tnf-α, il-1β and il-8), complement factors (c3 and c4), antimicrobial peptides (hepcidin, nk-lysin and β-defensin-1), immunoglobulins (igm and igt), and immune pathway-related signaling molecules (tlr1, tlr2, tlr4, myd88, irak4, irak1, traf6, nf-κb p65 and ap-1) were differentially upregulated in response to A. hydrophila and A. veronii challenge. Additionally, the expression levels of the intestinal pro-apoptotic genes tnfr1, tnfr2, tradd, caspase-8, caspase-3 and bax were significantly increased, whereas the expression of the inhibitory factor bcl-2 was significantly downregulated, indicating that Aeromonas infection significantly induced apoptosis in the intestine of grass carp. Moreover, the expression of intestinal tight junction proteins (occludin, zo-1, claudin b and claudin c) was significantly decreased after infection with Aeromonas. Histopathological analysis indicated the Aeromonas challenge caused severe damage to the intestinal villi with adhesions and detachment of intestinal villi accompanied by severe inflammatory cell infiltration at 12 h and 72 h. The 16S rRNA sequencing results showed that Aeromonas infection significantly altered the structure of the intestinal microflora of the grass carp at the phylum (Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes) and genus (Proteus, Cetobacterium, Bacteroides, and Aeromonas) levels. Take together, the findings of this study revealed that Aeromonas infection induces an intestinal immune response, triggers cell apoptosis, destroys physical barriers and alters microflora structure in the intestine of juvenile grass carp; the results will help to reveal the pathogenesis of intestinal bacterial diseases in grass carp.
Collapse
Affiliation(s)
- Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ran Peng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Kelan Jin
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Huilan Mo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Junde Fan
- Yueyang Yumeikang Biotechnology Co., Ltd., Yueyang, 414100, China
| | - Jianzhong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Department of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
2
|
Ortega L, Carrera C, Muñoz-Flores C, Salazar S, Villegas MF, Starck MF, Valenzuela A, Agurto N, Montesino R, Astuya A, Parra N, Pérez ET, Santibáñez N, Romero A, Ruíz P, Lamazares E, Reyes F, Sánchez O, Toledo JR, Acosta J. New insight into the biological activity of Salmo salar NK-lysin antimicrobial peptides. Front Immunol 2024; 15:1191966. [PMID: 38655253 PMCID: PMC11035819 DOI: 10.3389/fimmu.2024.1191966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.
Collapse
Affiliation(s)
- Leonardo Ortega
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carolina Muñoz-Flores
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Santiago Salazar
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Milton F. Villegas
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María F. Starck
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Niza Agurto
- Laboratorio de Piscicultura y Patología Acuática, Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Raquel Montesino
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Allisson Astuya
- Laboratorio de Genómica Marina y Cultivo Celular, Departamento de Oceanografía y Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS) Sur-Austral, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Natalie Parra
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ercilia T. Pérez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Natacha Santibáñez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (FONDAP), Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Pamela Ruíz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Talcahuano, Chile
| | - Emilio Lamazares
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fátima Reyes
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Laboratorio de Biofármacos Recombinantes, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jannel Acosta
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Gao JH, Zhao JL, Yao XL, Tola T, Zheng J, Xue WB, Wang DW, Xing Y. Identification of antimicrobial peptide genes from transcriptomes in Mandarin fish (Siniperca chuatsi) and their response to infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109247. [PMID: 38006905 DOI: 10.1016/j.fsi.2023.109247] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin β12, hepcidin, leap 2, β-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.
Collapse
Affiliation(s)
- Jin-Hua Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jin-Liang Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Xiao-Li Yao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Temesgen Tola
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jia Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Wen-Bo Xue
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Da-Wei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Ying Xing
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, PR China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, PR China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
4
|
Yang Y, Song X, Cui N, Lei T, Huang Y, Shi Y, Hu Y, Zhou X, Zhao Z. Functional characterization of obscure puffer ToNK-lysin: A novel immunomodulator possessing anti-bacterial and anti-inflammatory properties. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109080. [PMID: 37748586 DOI: 10.1016/j.fsi.2023.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
NK-lysins are one of the most abundant antimicrobial peptides produced by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs), and identified as a new class of intrinsically disordered proteins, playing critical roles in the cell-mediated cytotoxicity response, as well as immunomodulatory and antimicrobial activities upon a significant range of pathogens. In the present study, an NK-lysin was identified from Obscure puffer Takifugu obscurus (ToNK-lysin). The open reading frame of ToNK-lysin sequence spans 423 bp, encoding a peptide with 140 amino acids which shares a moderate residue identity (18%-60%) with NK-lysin of mammals and other teleost species. Phylogenetic analysis revealed that ToNK-lysin was most closely related to NK-lysins from the Pleuronectiformes (Bastard halibut Paralichthys olivaceus and Pacific halibut Hippoglossus stenolepis). Comprehensive computational analysis revealed that ToNK-lysin have substantial level of intrinsic disorder, which might be contribute to its multifunction. The transcripts of the ToNK-lysin were detected in multiple examined tissues and most abundant in gills. After bacterial and Poly I:C challenge, the transcriptional levels of ToNK-lysin were significantly up-regulated in the head kidney, liver and spleen at different time points. The recombinant ToNK-lysin showed significant antibacterial activity against Vibrio harveyi and Escherichia coli, and the ToNK-lysin treatment not only reduced the bacterial loads in liver and head kidney, but also alleviated the pathogen-mediated upregulation of immune-related genes. In addition, the co-incubation with rToNK-lysin protein remarkably degraded bacterial genomic DNA, suggesting the potential mechanism of ToNK-lysin against microbes. These results suggest that ToNK-lysin possess antibacterial and immunoregulatory function both in vivo and in vitro, which may allow it a potential applicability to the aquaculture industry.
Collapse
Affiliation(s)
- Yaxing Yang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
5
|
Buonocore F, Saraceni PR, Taddei AR, Miccoli A, Porcelli F, Borocci S, Gerdol M, Bugli F, Sanguinetti M, Fausto AM, Scapigliati G, Picchietti S. Antibacterial and anticancer activity of two NK-lysin-derived peptides from the Antarctic teleost Trematomus bernacchii. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109099. [PMID: 37734650 DOI: 10.1016/j.fsi.2023.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The NK-lysin antimicrobial peptide, first identified in mammals, possesses both antibacterial and cytotoxic activity against cancer cell lines. Homologue peptides isolated from different fish species have been examined for their functional characteristics in the last few years. In this study, a NK-lysin transcript was identified in silico from the head kidney transcriptome of the Antarctic teleost Trematomus bernacchii. The corresponding amino acid sequence, slightly longer than NK-lysins of other fish species, contains six cysteine residues that in mammalian counterparts form three disulphide bridges. Real time-PCR analysis indicated its predominant expression in T. bernacchii immune-related organs and tissues, with greatest mRNA abundance detected in gills and spleen. Instead of focusing on the full T. bernacchii derived NK-lysin mature molecule, we selected a 27 amino acid residue peptide (named NKL-WT), corresponding to the potent antibiotic NK-2 sequence found in human NK-lysin. Moreover, we designed a mutant peptide (named NKL-MUT) in which two alanine residues substitute the two cysteines found in the NKL-WT. The two peptides were obtained by solid phase organic synthesis to investigate their functional features. NKL-WT and NKL-MUT displayed antibacterial activity against the human pathogenic bacterium Enterococcus faecalis and the ESKAPE pathogen Acinetobacter baumannii, respectively. Moreover, at the determined Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values against these pathogens, both peptides showed high selectivity as they did not exhibit any haemolytic activity on erythrocytes or cytotoxic activity against mammalian primary cell lines. Finally, the NKL-MUT selectively triggers the killing of the melanoma cell line B16F10 by means of a pro-apoptotic pathway at a concentration range in which no effects were found in normal mammalian cell lines. In conclusion, the two peptides could be considered as promising candidates in the fight against antibiotic resistance and tumour proliferative action, and also be used as innovative adjuvants, either to decrease chemotherapy side effects or to enhance anticancer drug activity.
Collapse
Affiliation(s)
- F Buonocore
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - P R Saraceni
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy; Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Division of Health Protection Technologies, 00123, Rome, Italy
| | - A R Taddei
- Center of Large Equipments, Section of Electron Microscopy, University of Tuscia, Largo dell'Università Snc, 01100, Viterbo, Italy
| | - A Miccoli
- National Research Council, Inst. for Marine Biological Resources and Biotechnology, 60125, Ancona, Italy
| | - F Porcelli
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - S Borocci
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy; National Research Council, Inst. for Biological Systems (ISB-CNR) Secondary Office of Rome-Reaction Mechanisms c/o Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - M Gerdol
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - F Bugli
- Dept. of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, 00168, Italy; Dept. of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168, Rome, Italy
| | - M Sanguinetti
- Dept. of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, 00168, Italy; Dept. of Laboratory Sciences and Infectious Diseases, A. Gemelli University Hospital Foundation IRCCS, 00168, Rome, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Largo dell'Università snc, 01100, Viterbo, Italy.
| |
Collapse
|
6
|
Wang CB, Yan X, Wang GH, Liu WQ, Wang Y, Hao DF, Liu HM, Zhang M. NKHs27, a sevenband grouper NK-Lysin peptide that possesses immunoregulatory and antimicrobial activity. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108715. [PMID: 37001746 DOI: 10.1016/j.fsi.2023.108715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.
Collapse
Affiliation(s)
- Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
7
|
Liu MY, Zhang YR, Zhang JH, Miao L, Dang YF, Fei CJ, Li CH, Chen J. Molecular characterization and antimicrobial activity of NK-lysin in black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108703. [PMID: 36948366 DOI: 10.1016/j.fsi.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 μg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yi-Rong Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Jian-Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Liang Miao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yun-Fei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| |
Collapse
|
8
|
Xiong NX, Luo WS, Kuang XY, Wang F, Fang ZX, Ou J, Huang MZ, Fan LF, Luo SW, Liu SJ. Gut-liver immune and redox response in hybrid fish (Carassius cuvieri ♀ × Carassius auratus red var. ♂) after gut infection with Aeromonas hydrophila. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109553. [PMID: 36707042 DOI: 10.1016/j.cbpc.2023.109553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Aeromonas hydrophila can pose a great threat to fish survival. In this study, we investigated the differential immune and redox response in gut-liver axis of hybrid fish (WR) undergoing gut infection. WR anally intubated with A. hydrophila showed severe midgut injury with decreased length-to-width ratios of villi along with GC hyperplasia and enhanced antioxidant activities, but expression profiles of cytokines, chemokines, antibacterial molecules, redox sensors and tight junction proteins decreased dramatically. In contrast, immune-related gene expressions and antioxidant activities increased significantly in liver of WR following gut infection with A. hydrophila. These results highlighted the differential immune regulation and redox balance in gut-liver axis response to bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Wei-Sheng Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ming-Zhu Huang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
9
|
Ruan ZH, Huang W, Li YF, Jiang LS, Lu ZQ, Luo YY, Zhang XQ, Liu WS. The antibacterial activity of a novel NK-lysin homolog and its molecular characterization and expression in the striped catfish, Pangasianodon hypophthalmus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:256-263. [PMID: 35750117 DOI: 10.1016/j.fsi.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila was a common bacterial pathogen in aquaculture resulting in considerable losses to the striped catfish aquaculture industry. As an emergent antimicrobial peptide (AMP), NK-lysin (NKL) had activity against various microorganisms. However, the antibacterial activity of NKL from striped catfish (Pangasianodon hypophthalmus) both in vitro and vivo remains unclear. In this study, the cDNA sequence of P. hypophthalmus NK-lysin gene (PhNK-lysin) was cloned and characterized. The amino acid sequence of PhNK-lysin contains a signal peptide sequence of 17 amino acid (aa) residues and a mature peptide composed of 130 aa. The saposin B domain of mature peptide comprised six conserved cysteines forming three putative disulfide bonds. Phylogenetic analysis revealed that the PhNK-lysin was most closely related to that of the channel catfish (Ictalurus punctatus) NK-lysin. The transcriptional levels of the PhNK-lysin were significantly upregulated in response to A. hydrophila infection in various tissues including heart, liver, spleen, head kidney, trunk kidney and gill. The synthetic PhNK-lysin-derived peptide consisting of 38aa showed antibacterial activity against Vibrio harveii, Aeromonas hydrophila and Escherichia coli. The MIC for V. harveii, A. hydrophila and E. coli were 15.625 μM, 250 μM and 31.25 μM respectively. Besides, the synthetic PhNK-lysin decreased the bacterial load of liver and trunk kidney in vivo as well as increased the survival rate of A. hydrophila infected striped catfish. Hence, these data suggest that PhNK-lysin had antimicrobial effect and protects the host from pathogenic infection.
Collapse
Affiliation(s)
- Zhuo-Hao Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Laboratory of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen Huang
- Laboratory of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yi-Fu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Liang-Sen Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Zhi-Qiang Lu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Yuan-Yuan Luo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Xi-Quan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, China.
| |
Collapse
|
10
|
Liu Y, Lv H, Xu L, Zhang K, Mei Y, Chen J, Wang M, Guan Y, Pang H, Wang Y, Tan Z. The Effect of Dietary Lactic Acid Bacteria on Intestinal Microbiota and Immune Responses of Crucian Carp (Carassius auratus) Under Water Temperature Decrease. Front Microbiol 2022; 13:847167. [PMID: 35509308 PMCID: PMC9058164 DOI: 10.3389/fmicb.2022.847167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Temperature changes have a great impact on fish feeding, intestinal microorganisms, metabolism, and immune function. Therefore, it is necessary to develop effective methods to enhance the survival rates and growth of fish under water temperature changes. Lactic acid bacteria (LAB) are promising immunostimulatory feed additive, as demonstrated by their beneficial effects in several fish species. This study investigated the short-term effects of dietary LAB on intestinal microbiota composition and immune responses of crucian carp (Carassius auratus) when water temperature decreased from 30 ± 1°C to 18 ± 1°C. Lactococcus (L.) lactis 1,209 and L. lactis 1,242 with potential probiotics isolated from the intestine of Qinghai naked carp (Gymnocypris przewalskii) were selected as feed additives for the crucian carp feeding experiment. A total of 225 commercially available healthy crucian carp (250 ± 10 g) of similar age were kept in 30°C water for a week and then immediately transferred to 18 ± 1°C water, assigned to three dietary treatments for a 16-day feeding trial randomly: (1) HC, diets without additives (the control group); (2) HT, diets with 106 CFU/ml L. lactis 1,209; and (3) HL, with 106 CFU/ml L. lactis 1,242. Each group was set up with 3 replicates and each with 25 fish. The results showed that the mortality rate of crucian carp in HC, HT, and HL group was 50, 27, and 33%, respectively. High-throughput sequencing results displayed that the composition of the intestinal microorganism varied dynamically in response to different treatments and water temperature decrease. Among them, compared with the HC group, a higher abundance of Firmicutes and Proteobacteria, and a lower of Actinobacteria appeared in HT and HL. The cytokines heat shock protein 70 (HSP-70) in crucian carp intestinal tract significantly decreased when water temperature decreased (p < 0.05).
Collapse
Affiliation(s)
- Yuan Liu
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Haoxin Lv
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Liping Xu
- Xining Vegetable Technical Service Center, Xining, China
| | - Kun Zhang
- Xining Vegetable Technical Service Center, Xining, China
| | - Yan Mei
- Xining Vegetable Technical Service Center, Xining, China
| | - Jun Chen
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Min Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Yifei Guan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Huili Pang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Yanping Wang
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural, Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhongfang Tan,
| |
Collapse
|
11
|
Tang Y, Liu X, Feng C, Zhou Z, Liu S. Nicotinamide phosphoribosyltransferase (Nampt) of hybrid crucian carp protects intestinal barrier and enhances host immune defense against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104314. [PMID: 34785271 DOI: 10.1016/j.dci.2021.104314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Nicotinamide phosphoribosyltransferase (Nampt) can act extracellularly as a mediator of inflammation or intracellularly as a rate-limiting enzyme, regulating nicotinamide adenine dinucleotide (NAD) biosynthesis in the NAD salvage pathway. Nampt exerts important immunological functions during infection in mammals. However, the in vivo function of fish Nampt in immune regulation and inflammation is essentially unknown. With an aim to elucidate the antimicrobial mechanism of Nampt in fish, we in this study examined the function of Nampt from hybrid crucian carp. Hybrid crucian carp Nampt (WR-Nampt) possesses the conserved nicotinamide phosphoribosyltransferase domain and shows high similarity to that of mammalian Nampt. WR-Nampt is expressed in multiple tissues and is upregulated by bacterial infection. Overexpression of WR-Nampt significantly increased the number of goblet cells of distal intestine. In addition, WR-Nampt induced significant inductions in the expression of the antimicrobial molecules (IL-22, Hepcidin-1, LEAP-2 and MUC2) and tight junctions (ZO-1 and Occludin). Consistent with this, fish administered with WR-Nampt significantly alleviated the intestinal permeability and apoptosis, thereby enhancing host's resistance against bacterial infection. Together these results revealed the potential effect of WR-Nampt in intestinal barrier and immune defense against bacterial infection.
Collapse
Affiliation(s)
- Yiyang Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiaofeng Liu
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chen Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
12
|
Xiong NX, Ou J, Fan LF, Kuang XY, Fang ZX, Luo SW, Mao ZW, Liu SJ, Wang S, Wen M, Luo KK, Hu FZ, Wu C, Liu QF. Blood cell characterization and transcriptome analysis reveal distinct immune response and host resistance of different ploidy cyprinid fish following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2022; 120:547-559. [PMID: 34923115 DOI: 10.1016/j.fsi.2021.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1β (IL-1β) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1β secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
13
|
Xiong NX, Luo SW, Mao ZW, Fan LF, Luo KK, Wang S, Hu FZ, Wen M, Liu QF, Liu SJ. Ferritin H can counteract inflammatory response in hybrid fish and its parental species after Aeromonas hydrophila infection. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109174. [PMID: 34461291 DOI: 10.1016/j.cbpc.2021.109174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022]
Abstract
Ferritin H can participate in the regulation of fish immunity. Tissue-specific analysis revealed that the highest expressions of Ferritin H in parental species were observed in spleen, while peaked level of Ferritin H mRNA in hybrid fish was observed in liver. In addition, A. hydrophila challenge could sharply enhance their Ferritin H mRNA expression in liver, kidney and spleen. To further investigate their roles in immune regulation, their Ferritin H fusion proteins were produced in vitro. Ferritin H fusion proteins could exhibit a direct binding activity to A. hydrophila and endotoxin in a dose-dependent manner, restrict dissemination of A. hydrophila to tissues and abrogate inflammatory cascades. Moreover, treatment with Ferritin H fusion proteins could reduce A. hydrophila-induced lipid peroxidation. These results indicated that Ferritin H in hybrid fish elicited a similar immune regulation of A. hydrophila-induced inflammatory signals in comparison with those of its parents.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha 410022, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
14
|
Xiong NX, Luo SW, Fan LF, Mao ZW, Luo KK, Liu SJ, Wu C, Hu FZ, Wang S, Wen M, Liu QF. Comparative analysis of erythrocyte hemolysis, plasma parameters and metabolic features in red crucian carp (Carassius auratus red var) and triploid hybrid fish following Aeromonas hydrophila challenge. FISH & SHELLFISH IMMUNOLOGY 2021; 118:369-384. [PMID: 34571155 DOI: 10.1016/j.fsi.2021.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|