1
|
Jasni N, Wee CL, Ismail N, Yaacob NS, Othman N. Comparative putative metabolites profiling of Tachypleus gigas and Carcinoscorpius rotundicauda hemocytes stimulated with lipopolysaccharide. Sci Rep 2024; 14:3968. [PMID: 38368470 PMCID: PMC10874427 DOI: 10.1038/s41598-024-54279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024] Open
Abstract
Horseshoe crabs are among the most studied invertebrates due to their unique, innate immune system and biological processes. The metabolomics study was conducted on lipopolysaccharide (LPS)-stimulated and non-stimulated hemocytes isolated from the Malaysian Tachypleus gigas and Carcinoscorpius rotundicauda. LC-TOF-MS, multivariate analyses, principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) were included in this study to profile the metabolites. A total of 37 metabolites were identified to be differentially abundant and were selected based on VIP > 1. However, of the 37 putative metabolites, only 23 were found to be significant with ANOVA at p < 0.05. The metabolites were identified using several databases, and the literature review of the metabolites was reported in the manuscript. Thus, this study has provided further insights into the putative metabolites' presence in the hemocytes of horseshoe crabs that are stimulated and non-stimulated with LPS and their abundance in each species. Several putative metabolites showed they have medicinal values from previous studies.
Collapse
Affiliation(s)
- Nurhana Jasni
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Malaysia
| | - Chee Lee Wee
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Malaysia.
| |
Collapse
|
2
|
Zhao S, Hu Q, Jiang H, Zhao Y, Wang Y, Feng C, Li X. Multi-omics analysis of oxidative stress and apoptosis in hepatopancreas cells induced by Polyascus gregaria parasitizing the Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109180. [PMID: 37863124 DOI: 10.1016/j.fsi.2023.109180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
Polyascus gregaria, a parasitic barnacle, poses a significant threat to Eriocheir sinensis farms by inhibiting crab growth. However, the molecular and pathological mechanisms behind P. gregaria infection in the hepatopancreas of E. sinensis remain unclear. In this study, we investigated the impact and underlying mechanisms of P. gregaria infection on E. sinensis through analyzing the infected hepatopancreatic tissues by tandem mass tag technology and RNA-Seq high-throughput sequencing. Among the identified 10,693 differentially expressed genes, 294 genes were significantly altered following P. gregaria infection, including 92 upregulated and 202 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses further revealed the involvement of these genes in oxidative decomposition, lipid metabolism, inflammation, and hepatopancreas metabolism. Meanwhile, the identified 253 differentially expressed proteins, including 143 upregulated and 110 downregulated proteins, are mainly related to cellular and metabolic processes, catalytic activity, and cell components. The pathway analysis indicated their enrichment in glycolysis/gluconeogenesis, oxidative phosphorylation, endoplasmic reticulum protein processing, and actin cytoskeleton regulation. The involvement of these differentially expressed genes and proteins in the peroxisome proliferator-activated receptors pathway during host immune responses against P. gregaria infection has been highlighted. Furthermore, pathological examinations and biochemical indicators jointly demonstrated the hepatopancreatic damage and increased oxidative stress and apoptosis in the infected E. sinensis. Collectively, our study provides crucial insights into the mechanisms underlying the E. sinensis-P. gregaria interactions, and may contribute to the development of novel strategies for parasite control and reducing economic losses in aquaculture.
Collapse
Affiliation(s)
- Shiwei Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qingbiao Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongbo Jiang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanping Wang
- Linong Testing (Binzhou) Co., Ltd., Binzhou Bohai Advanced Technology Research Institute, Binzhou, 256600, China
| | - Chengcheng Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaodong Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
3
|
Hong X, Wang Y, Wang K, Wei C, Li W, Yu L, Xu H, Zhu J, Zhu X, Liu X. Single-Cell Atlas Reveals the Hemocyte Subpopulations and Stress Responses in Asian Giant Softshell Turtle during Hibernation. BIOLOGY 2023; 12:994. [PMID: 37508424 PMCID: PMC10376416 DOI: 10.3390/biology12070994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Hibernation in turtle species is an adaptive survival strategy to colder winter conditions or food restrictions. However, the mechanisms underlying seasonal adaptions remain unclear. In the present study, we collected hemocytes from Pelochelys cantorii and compared the molecular signature of these cells between the active state and hibernation period based on single-cell RNA sequencing (scRNA-seq) analysis. We found six cell types and identified a list of new marker genes for each cell subpopulation. Moreover, several heat shock genes, including the Hsp40 family chaperone gene (DNAJ) and HSP temperature-responsive genes (HSPs), were upregulated during the hibernation period, which predicted these genes may play crucial roles in the stress response during hibernation. Additionally, compared to hemocytes in the active state, several upregulated differentially expressed immune-related genes, such as stat1, traf3, and socs6, were identified in hemocytes during the hibernation period, thus indicating the important immune function of hemocytes. Therefore, our findings provide a unified classification of P. cantorii hemocytes and identify the genes related to the stress response, thereby providing a better understanding of the adaptive mechanisms of hibernation.
Collapse
Affiliation(s)
- Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kaikuo Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haoyang Xu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
4
|
Zhang X, Huang X, Wang Y, Yang H, Yang J, Zheng X. The complete mitochondrial genome of Phthiridium szechuanum (Nycteribiidae, Diptera). Mitochondrial DNA B Resour 2023; 8:211-214. [PMID: 36761103 PMCID: PMC9904301 DOI: 10.1080/23802359.2023.2171245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Phthiridium szechuanum is a bat surface parasite under the family Nycteribiidae that prefers to roost in the hair of bats to feed on their blood. In this study, the complete mitochondrial genome of P. szechuanum was studied for the first time using Illumina sequencing technology. The mitochondrial genome was 14,896 bp in size and was predicted to encode 37 genes including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. Phylogenetic trees were constructed using the IQ-TREE web server and phylogenetic analysis was performed using the maximum likelihood method, and P. szechuanum was found to be phylogenetically closest to Basilia ansifera. These data will provide a molecular biological approach to the species identification of P. szechuanum and provide a new reference for further studies on the population genetics and phylogeny of the family Nycteribiidae.
Collapse
Affiliation(s)
- Xianzheng Zhang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China
| | - Xiaobin Huang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China,CONTACT Xiaobin Huang Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China
| | - Yujuan Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Huijuan Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China
| | - Jinting Yang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China
| | - Xiaoyan Zheng
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, China
| |
Collapse
|
5
|
Yu K, Zhao X, Xiang Y, Li C. Phenotypic and functional characterization of two coelomocyte subsets in Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108453. [PMID: 36471560 DOI: 10.1016/j.fsi.2022.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The hemocytes of invertebrates are composed of different cell subsets with different morphologies and structures. Different cell subsets have different immune functions, which play an important role in innate immune response against pathogens. However, the understanding of the classification of Apostichopus japonicus coelomocytes and the molecular basis of immune function of different cell subsets is very limited. In this study, two coelomocyte subpopulations of A. japonicus were isolated by Percoll density gradient centrifugation. They were identified from their morphological and structural characteristics, namely, spherical cells with a size of 10-12 μm spherical in shape and a large number of small granules inside; lymphocyte-like cells with a size of 4-5 μm spherical or oval in shape, and 1-3 filopodia. Functionally, the phagocytic capacity and lysosomal activity in spherical cells were significantly greater than those in lymphocyte-like cells. The results suggest that spherical cells may play a more critical role in the immune responses. Meanwhile, transcriptome sequencing analysis was performed to further clarify the functional differences between the two cell subsets. The data indicated significantly different gene expression patterns in them. Spherical cells tend to participate in immune defense, whereas lymphocyte-like cells tend to participate in energy metabolism. In addition, lymphocyte-like cells may convert oxidative phosphorylation to glycolysis by changing the manner of energy metabolism to quickly adapt to the energy demand of external stimuli. Spherical cells may respond to LPS stimulation through phagocytosis, and their response time is slower than that of lymphocyte-like cells. The expression of genes involved in endocytosis, phagocytosis, and lysosomal and humoral immunity in spherical cells was significantly higher than that in lymphocyte-like cells. These data provide valuable information for understanding the molecular basis of cellular and humoral immunity in A. japonicus.
Collapse
Affiliation(s)
- Kangrong Yu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Yangxi Xiang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
6
|
Sarmiento ME, Chin KL, Lau NS, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Transcriptomic Signature of Horseshoe Crab Carcinoscorpius rotundicauda Hemocytes' Response to Lipopolysaccharides. Curr Issues Mol Biol 2022; 44:5866-5878. [PMID: 36547060 PMCID: PMC9777084 DOI: 10.3390/cimb44120399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Carcinoscorpius rotundicauda (C. rotundicauda) is one of the four species of horseshoe crabs (HSCs). The HSC hemocytes store defense molecules that are released upon encountering invading pathogens. The HSCs rely on this innate immunity to continue its existence as a living fossil for more than 480 million years. To gain insight into the innate mechanisms involved, transcriptomic analysis was performed on isolated C. rotundicauda hemocytes challenged with lipopolysaccharides (LPS), the main components of the outer cell membrane of gram-negative bacteria. RNA-sequencing with Illumina HiSeq platform resulted in 232,628,086 and 245,448,176 raw reads corresponding to 190,326,253 and 201,180,020 high-quality mappable reads from control and LPS-stimulated hemocytes, respectively. Following LPS-stimulation, 79 genes were significantly upregulated and 265 genes were downregulated. The differentially expressed genes (DEGs) were related to multiple immune functional categories and pathways such as those of the cytoskeleton, Toll and Imd, apoptosis, MAP kinase (MAPK), inositol phosphate metabolism, phagosome, leucocyte endothelial migration, and gram-negative bacterial infection, among others. This study provides important information about the mechanisms of response to LPS, which is relevant for the understanding the HSCs' immune response.
Collapse
Affiliation(s)
- Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
- Correspondence: (A.A.); (N.S.Y.)
| |
Collapse
|
7
|
Adebayo IA, Habib MAH, Sarmiento ME, Acosta A, Yaacob NS, Ismail MN. Proteomic analysis of Malaysian Horseshoe crab (Tachypleus gigas) hemocytes gives insights into its innate immunity host defence system and other biological processes. PLoS One 2022; 17:e0272799. [PMID: 35947629 PMCID: PMC9365167 DOI: 10.1371/journal.pone.0272799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Horseshoe crabs are one of the most studied invertebrates due to their remarkable innate immunity mechanism and biological processes. In this work, the proteins of the lipopolysaccharides (LPS)-stimulated and non-stimulated hemocytes of Malaysian Tachypleus gigas were profiled using LC-MS/MS. A total of 154 proteins were identified in both types of samples. Additionally, seventy-seven proteins were commonly found in both conditions, while 52 and 25 proteins were uniquely found in the LPS-stimulated and non-stimulated hemocytes, respectively. ATP-dependent energy-generating proteins such as actins and BLTX actin-related proteins were detected in both stimulated and non-stimulated T. gigas hemocytes, but more of such proteins were found in the former type. Proteins such as tachylectin-2, coagulogen, c-reactive proteins, histones, hemocyanin, and DNA polymerase, which play key roles in the organism’s innate immunity, were differentially expressed in the hemocytes following LPS challenge. In conclusion, the proteins identified in the hemolymph of T. gigas are vital for the organism’s molecular functions, biological processes, and activation of innate immunity.
Collapse
Affiliation(s)
- Ismail Abiola Adebayo
- Faculty of Biomedical Sciences, Department of Microbiology and Immunology, Kampala International University, Ishaka, Bushenyi, Uganda
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
- Department of Clinical Biology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia (USM), Kelantan, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, USM, Pulau Pinang, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Zhang J, Ding N, He Y, Tao C, Liang Z, Xin W, Zhang Q, Wang F. Bioinformatic identification of genomic instability-associated lncRNAs signatures for improving the clinical outcome of cervical cancer by a prognostic model. Sci Rep 2021; 11:20929. [PMID: 34686717 PMCID: PMC8536663 DOI: 10.1038/s41598-021-00384-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The research is executed to analyze the connection between genomic instability-associated long non-coding RNAs (lncRNAs) and the prognosis of cervical cancer patients. We set a prognostic model up and explored different risk groups' features. The clinical datasets and gene expression profiles of 307 patients have been downloaded from The Cancer Genome Atlas database. We established a prognostic model that combined somatic mutation profiles and lncRNA expression profiles in a tumor genome and identified 35 genomic instability-associated lncRNAs in cervical cancer as a case study. We then stratified patients into low-risk and high-risk groups and were further checked in multiple independent patient cohorts. Patients were separated into two sets: the testing set and the training set. The prognostic model was built using three genomic instability-associated lncRNAs (AC107464.2, MIR100HG, and AP001527.2). Patients in the training set were divided into the high-risk group with shorter overall survival and the low-risk group with longer overall survival (p < 0.001); in the meantime, similar comparable results were found in the testing set (p = 0.046), whole set (p < 0.001). There are also significant differences in patients with histological grades, FIGO stages, and different ages (p < 0.05). The prognostic model focused on genomic instability-associated lncRNAs could predict the prognosis of cervical cancer patients, paving the way for further research into the function and resource of lncRNAs, as well as a key approach to customizing individual care decision-making.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Nan Ding
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yongxing He
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chengbin Tao
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhongzhen Liang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenhu Xin
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qianyun Zhang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|