1
|
Ren X, Peng B, Tan Y, Zhu X, Bai X. Cooperation of R and Rab5 regulates crayfish anti-disease immune response by triggering apoptosis. Int J Biol Macromol 2025; 305:141206. [PMID: 39971040 DOI: 10.1016/j.ijbiomac.2025.141206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Toll-like receptors (TLRs) are involved in innate immunity in aquatic animals. The comprehensive regulation characteristic of TLRs in the immune of crayfish (Procambarus clarkii) has been less elucidated. In this study, we investigated the regulatory pathways of TLRs in the crayfish by identifying the proteins interacting with TLRs encoded by the resistance (R)-gene identified in our previous study. In vivo pull-down analysis indicated an interaction between the R protein and myeloid differentiation factor 88 (MyD88) and the Ras-like small GTPase Rab5. In vitro pull-down assays verified that R directly interacted with MyD88, but not with Rab5. Many differentially expressed genes involved in the Toll signaling pathway were identified using transcriptomes analysis of RNAi-Rab5 and RNAi-GFP crayfish hemocytes. Tumor susceptibility gene 101 and CD9 (encoding a tetraspanin protein) related to exosomes were identified, and their protein expression was validated using western blotting. We hypothesize that the R protein receives a signal upon pathogen challenge and triggers apoptosis during immune responses by interacting with MyD88, with the cooperation of Rab5-secreting exosomes. We anticipate this study to provide preliminary evidence for the involvement of exosomes in the TLR-mediated immune regulatory pathway and advance the understanding of this pathway in crayfish immune resistance.
Collapse
Affiliation(s)
- Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Peng
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunfei Tan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xintao Zhu
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
2
|
Yang X, Wang B, Jiang K, Xu K, Zhong C, Liu M, Wang L. The combined analysis of transcriptomics and metabolomics reveals the mechanisms by which dietary quercetin regulates growth and immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109579. [PMID: 38648996 DOI: 10.1016/j.fsi.2024.109579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
As a potent antioxidant, the flavonoid compound quercetin (QUE) has been widely used in the farming of aquatic animals. However, there are fewer reports of the beneficial effects, especially in improving immunity of Penaeus vannamei by QUE. The aim of this study was to investigate the effects of dietary QUE on growth, apoptosis, antioxidant and immunity of P. vannamei. It also explored the potential mechanisms of QUE in improving the growth and immunity of P. vannamei. P. vannamei were fed diets with QUE for 60 days. The results revealed that QUE (0.5 or 1.0 g/kg) ameliorated the growth, and the expressions of genes related to apoptosis, antioxidant, and immunity. The differentially expressed genes (DEGs) and differential metabolites (DMs) obtained through transcriptomics and metabolomics, respectively, enriched in pathways related to nutritional metabolism such as lipid metabolism, amino acid metabolism, and carbohydrate metabolism. After QUE addition, especially at 0.5 g/kg, DEGs were enriched into the functions of response to stimulus and antioxidant activity, and the pathways of HIF-1 signaling pathway, C-type lectin receptor signaling pathway, Toll-like receptor signaling pathway, and FoxO signaling pathway. In conclusion, dietary QUE can ameliorate growth, apoptosis, antioxidant and immunity of P. vannamei, the appropriate addition amount was 0.5 g/kg rather than 1.0 g/kg. Regulations of QUE on nutrient metabolism and immune-related pathways, and bioactive metabolites, were important factors for improving the aforementioned abilities in P. vannamei.
Collapse
Affiliation(s)
- Xuanyi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Baojie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Keyong Jiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kefeng Xu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Chen Zhong
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China
| | - Mei Liu
- Qingdao Aquatic Organisms Quality Evaluation and Utilization Engineering Research Center, Marine Science Research Institute of Shandong Province, Qingdao, China.
| | - Lei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Gong J, Pan X, Zhou X, Zhu F. Dietary quercetin protects Cherax quadricarinatus against white spot syndrome virus infection. J Invertebr Pathol 2023; 198:107931. [PMID: 37169327 DOI: 10.1016/j.jip.2023.107931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Quercetin is a plant flavonoid with a molecular formula C15H10O7. It has antioxidant, anti-inflammatory, antibacterial, and anti-apoptotic effects in animals. We used red claw crayfish (Cherax quadricarinatus) infected with white spot syndrome virus (WSSV) to investigate quercetin's effects on innate immunity of crustaceans. Quercetin supplementation significantly reduced the mortality of crayfish caused by WSSV infection and the number of VP28 copies in WSSV-infected crayfish. Quantitative real-time PCR analysis showed that dietary quercetin supplementation increased the expression of immune-related genes, like JAK, STAT and ALF. Quercetin supplementation affected the activity of six immune-related enzymes and increased the total number of hemocytes in crayfish. It also significantly reduced the rate of hemocyte apoptosis in both WSSV-infected and uninfected crayfish. These results demonstrate the potential for commercial use of quercetin for the prevention of WSSV disease in crustaceans.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaoyi Pan
- Key Laboratory of Healthy Freshwater Aquaculture Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
4
|
Du Z, Wang H, Gao Y, Zheng S, Kou X, Sun G, Song J, Dong J, Wang G. Exploring the Potential Molecular Mechanism of Sijunzi Decoction in the Treatment of Non-Segmental Vitiligo Based on Network Pharmacology and Molecular Docking. Clin Cosmet Investig Dermatol 2023; 16:821-836. [PMID: 37033783 PMCID: PMC10075956 DOI: 10.2147/ccid.s403732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Background Non-segmental vitiligo is a common decolorized skin disease. The purpose of this study was to reveal the active components of Sijunzi decoction (SJZD) and the target genes for the treatment of non-segmental vitiligo. Methods Based on TCMSP and GEO databases, effective components and targets of SJZD in the treatment of non-segmental vitiligo were revealed by network pharmacology. GO and KEGG were used to analyze the biological functions of SJZD targets. The Cytoscape-cytoHubba plugin was used to identify hub target genes. SsGSEA method was used to analyze the infiltration level of immune cells in non-segmental vitiligo. Molecular docking was performed to predict the interaction between active compounds and hub target genes. Finally, real-time PCR detection was also performed. Results It was found that 104 active compounds may be effective ingredients in the treatment of non-segmental vitiligo. These 104 compounds acted on 42 differentially expressed target genes. KEGG analysis showed that target genes were significantly enriched in immune-related pathways such as MAPK and TNF signaling pathways. A total of 6 hub target genes (AKT1, CASP3, PPARG, SIRT1, TNF and TP53) were identified using the Cytoscape-cytoHubba plugin. Molecular docking showed that active compounds quercetin, kaempferol, formononetin and naringenin had good binding to hub target genes. We also found that Type 2 T helper cells, CD56bright natural killer cell and CD56dim natural killer cell infiltration levels were abnormal in non-segmental vitiligo and correlated with AKT1. Conclusion The results of this study indicate that quercetin, kaempferol, formononetin and naringenin in SJZD may play an important role in the treatment of non-segmental vitiligo by acting on AKT1, CASP3, PPARG, SIRT1, TNF and TP53 to regulate immune cell infiltration and multiple signaling pathways.
Collapse
Affiliation(s)
- Ziwei Du
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
| | - Hepeng Wang
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
| | - Yang Gao
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
- Correspondence: Yang Gao, Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, No. 209 Jianhua South Street, Shijiazhuang, Hebei, 050031, People’s Republic of China, Tel +86-15833969687, Email
| | - Shumao Zheng
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
| | - Xiaoli Kou
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
| | - Guoqiang Sun
- Department of Dermatology, Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, Hebei, 050031, People’s Republic of China
| | - Jinxian Song
- Department of Dermatology, Quyang County People’s Hospital, Baoding, People’s Republic of China
| | - Jingfei Dong
- Department of Clinical Laboratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Genhui Wang
- Department of Dermatology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
| |
Collapse
|
5
|
Review of Medicinal Plants and Active Pharmaceutical Ingredients against Aquatic Pathogenic Viruses. Viruses 2022; 14:v14061281. [PMID: 35746752 PMCID: PMC9230652 DOI: 10.3390/v14061281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaculture offers a promising source of economic and healthy protein for human consumption, which can improve wellbeing. Viral diseases are the most serious type of diseases affecting aquatic animals and a major obstacle to the development of the aquaculture industry. In the background of antibiotic-free farming, the development and application of antibiotic alternatives has become one of the most important issues in aquaculture. In recent years, many medicinal plants and their active pharmaceutical ingredients have been found to be effective in the treatment and prevention of viral diseases in aquatic animals. Compared with chemical drugs and antibiotics, medicinal plants have fewer side-effects, produce little drug resistance, and exhibit low toxicity to the water environment. Most medicinal plants can effectively improve the growth performance of aquatic animals; thus, they are becoming increasingly valued and widely used in aquaculture. The present review summarizes the promising antiviral activities of medicinal plants and their active pharmaceutical ingredients against aquatic viruses. Furthermore, it also explains their possible mechanisms of action and possible implications in the prevention or treatment of viral diseases in aquaculture. This article could lay the foundation for the future development of harmless drugs for the prevention and control of viral disease outbreaks in aquaculture.
Collapse
|