1
|
Shang GJ, Liu SY, Zhu R, Li DL, Meng ST, Wang YT, Wu LF. Chlorogenic acid improves common carp (Cyprinus carpio) liver and intestinal health through Keap-1/Nrf2 and NF-κB signaling pathways: Growth performance, immune response and antioxidant capacity. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109378. [PMID: 38272333 DOI: 10.1016/j.fsi.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this experiment, we investigated the effects of adding chlorogenic acid (CGA) to the diet on growth performance, immune function, inflammation response, antioxidant capacity and its related mechanisms of common carp (Cyprinus carpio). A total of 600 fish were selected and randomly divided into five treatment groups and fed with CGA containing 0 mg/kg (CK), 100 mg/kg (L100), 200 mg/kg (L200), 400 mg/kg (L400) and 800 mg/kg (L800) for 56 days. The results of the experiment were as follows: addition of CGA significantly increased the WGR, SGR, FER, and PER of common carp (P < 0.05). The addition of 400-800 mg/kg of CGA significantly increased the serum levels of LZM, AKP activity, C3 and C4 concentration, and increased immune function of common carp (P < 0.05). Regarding antioxidant enzyme activities, adding CGA significantly increased SOD, CAT, and GsH-Px activities, while decreasing MDA content (P < 0.05). Compared with the CK group, the mRNA expression levels of NF-κB, TNF-α, and IL-1β were decreased. The IL-10 and TGF-β were increased in the liver and intestines of the CGA supplemented group. Meanwhile, the addition of CGA also significantly up-regulated the mRNA expression levels of Nrf2, HO-1, SOD, CAT, and GPX (P < 0.05). CGA also positively contributed to the development of the carp intestinal tract, as demonstrated by decreased serum levels of DAO, D-LA, and ET-1. And the mucosal fold height was increased significantly with increasing levels of CGA. In conclusion, the addition of CGA in the feed can enhance the growth performance, immune function and antioxidant capacity of common carp, and improve the health of the intestine and liver. According to the results of this experiment, the optimal addition amount in common carp diets was 400 mg/kg.
Collapse
Affiliation(s)
- Guo-Jun Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Ying Liu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Rui Zhu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Deng-Lai Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Si-Tong Meng
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yin-Tao Wang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Li-Fang Wu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China; Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Effects of Bee Pollen on Growth Performance, Intestinal Microbiota and Histomorphometry in African Catfish. Animals (Basel) 2022; 13:ani13010132. [PMID: 36611741 PMCID: PMC9817710 DOI: 10.3390/ani13010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to determine the dietary effects of honeybee pollen (BP) on growth parameters, intestinal microbiota, hepatic histoarchitecture, and intestinal histomorphometry of African catfish Clarias gariepinus juveniles. The feeding experiment was carried out in a recirculating aquaculture system under controlled conditions for 21 days to achieve more than a 10-fold increase in weight in fish from the control group. Fish were fed well-balanced commercial feed without any supplements and served as a reference group (group C) and other diets enriched with varying BP levels as 1% (BP1), 2% (BP2), and 3% (BP3). Results showed a significant (p < 0.05) effect of the dietary BP not only on the growth parameters (such as final body weight: 5.0 g to 6.6−7.5 g, weight gain: 0.23 g/d to 0.31−0.35 g/d, body length: 84.7 mm to 93.8−95.9 mm, and specific growth rate: 11.7%/d to 13.1−13.7%/d, group C vs. experimental groups, respectively) but also on the development of beneficially important gut microbiota, such as lactic acid-producing bacteria. In BP-enriched groups, an average of 45% higher body weight gain was observed compared to those reared in the control group. The histological analysis showed that dietary BP may have a positive effect on the development of the intestinal tract and may enhance the absorption of nutrients with the potential ability to maintain a normal hepatic histoarchitecture of the treated African catfish. The results obtained suggest the optimum level of BP additive to feed for African catfish should be 1%.
Collapse
|
3
|
Characterization of Romanian Bee Pollen—An Important Nutritional Source. Foods 2022; 11:foods11172633. [PMID: 36076817 PMCID: PMC9455760 DOI: 10.3390/foods11172633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Bee pollen represents an important bee product, which is produced by mixing flower pollens with nectar honey and bee’s salivary substances. It represents an important source of phenolic compounds which can have great importance for importance for prophylaxis of diseases, particularly to prevent cardiovascular and neurodegenerative disorders, those having direct correlation with oxidative damage. The aim of this study was to characterize 24 bee pollen samples in terms of physicochemical parameters, organic acids, total phenolic content, total flavonoid content, individual phenolics compounds, fatty acids, and amino acids from the Nort East region of Romania, which have not been studied until now. The bee pollen can be considered as a high protein source (the mean concentration was 22.31% d.m.) with a high energy value (390.66 kcal/100 g). The total phenolic content ranged between 4.64 and 17.93 mg GAE/g, while the total flavonoid content ranged between 4.90 and 20.45 mg QE/g. The high protein content was observed in Robinia pseudoacacia, the high content of lipids was observed in Robinia pseudoacacia pollen, the high fructose content in Prunus spp. pollen while the high F/G ratio was observed in Pinaceae spp. pollen. The high TPC was observed in Prunus spp. pollen, the high TFC was observed in Robinia pseudoacacia pollen, the high free amino acid content was observed in Pinaceae spp. pollen, and the high content of PUFA was reported in Taraxacum spp. pollen. A total of 16 amino acids (eight essential and eight non-essential amino acids) were quantified in the bee pollen samples analyzed. The total content of the amino acids determined for the bee pollen samples varied between 11.31 µg/mg and 45.99 µg/mg. Our results can indicate that the bee pollen is a rich source of protein, fatty acids, amino acids and bioactive compounds.
Collapse
|
4
|
Di Chiacchio IM, Gómez-Abenza E, Paiva IM, de Abreu DJM, Rodríguez-Vidal JF, Carvalho EEN, Carvalho SM, Solis-Murgas LD, Mulero V. Bee pollen in zebrafish diet affects intestinal microbiota composition and skin cutaneous melanoma development. Sci Rep 2022; 12:9998. [PMID: 35705722 PMCID: PMC9200724 DOI: 10.1038/s41598-022-14245-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
Bee pollen is recommended as dietary supplement due to immunostimulating functions including antioxidant, anti-inflammatory and anti-carcinogenic properties. Nevertheless, the effectiveness of such properties is still not well understood. As diet can be associated with animal performance, microbiota modulation and potentially factor for cancer, this study aimed to analyze if bee pollen could influence growth, gut microbial and skin cutaneous melanoma development in zebrafish. Control diets based on commercial flakes and Artemia were compared with the same diet supplemented with bee pollen. Fish weight gain, increased length, intestinal bacteria metagenomics analysis, serum amyloid A gene expression and cutaneous melanoma transplantation assays were performed. Bee pollen affected microbiota composition and melanoma development. Differential abundance revealed higher abundance in the control group for Aeromonadaceae family, Aeromonas and Pseudomonas genus, A. sobria, A. schubertii, A. jandaei and P. alcaligenes species compared with pollen diet group. Pollen group presented higher abundance for Chromobacterium genus and for Gemmobacter aquaticus, Flavobacterium succinicans and Bifidobacterium breve compared with control group. Unexpectedly, fish fed with bee pollen showed higher tumor growth rate and larger tumor size than control group. This is the first study to report intestinal microbial changes and no protective cancer properties after bee pollen administration.
Collapse
Affiliation(s)
- Isabela M Di Chiacchio
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elena Gómez-Abenza
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Isadora M Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, MG, 31270-901, Brasil
| | - Danilo J M de Abreu
- Programa de Pós-graduação em Microbiologia Agrícola-ICN, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brazil
| | - Juan Francisco Rodríguez-Vidal
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain
| | - Elisângela E N Carvalho
- Departamento de Ciência dos Alimentos-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Stephan M Carvalho
- Programa de Pós-graduação em Entomologia-ESAL, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil
| | - Luis David Solis-Murgas
- Programa de Pós-graduação em Ciências Veterinárias-FZMV, Universidade Federal de Lavras, UFLA, 3037, Lavras, MG, 37200-900, Brasil.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia. IMIB-Arrixaca. CIBERER, 30100, Murcia, Spain.
| |
Collapse
|
5
|
Arena R, de Medeiros ACL, Secci G, Mancini S, Manuguerra S, Bovera F, Santulli A, Parisi G, Messina CM, Piccolo G. Effects of Dietary Supplementation with Honeybee Pollen and Its Supercritical Fluid Extract on Immune Response and Fillet's Quality of Farmed Gilthead Seabream ( Sparus aurata). Animals (Basel) 2022; 12:ani12060675. [PMID: 35327073 PMCID: PMC8944498 DOI: 10.3390/ani12060675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The awareness of the correlation between administered diet, fish health and products’ quality has led to the increase in the research for innovative and functional feed ingredients. Herein, a plant-derived product rich in bioactive compounds, such as honeybee pollen (HBP), was included as raw (HBP) and as Supercritical Fluid Extracted (SFE) pollen (HBP_SFE) in the diet for gilthead seabream (Sparus aurata). The experiment was carried out on 90 fish with an average body weight of 294.7 ± 12.8 g, divided into five groups, according to the administration of five diets for 30 days: control diet (CTR); two diets containing HBP at 5% (P5) and at 10% (P10) level of inclusion; two diets containing HBP_SFE, at 0.5% (E0.5) and at 1% (E1) level of inclusion. Their effects were evaluated on 60 specimens (336.2 ± 11.4 g average final body weight) considering the fish growth, the expression of some hepatic genes involved in the inflammatory response (il-1β, il-6 and il-8) through quantitative real-time PCR, and physico-chemical characterization (namely color, texture, water holding capacity, fatty acid profile and lipid peroxidation) of the fish fillets monitored at the beginning (day 0) and after 110 days of storage at −20 °C. The results obtained showed that the treatment with diet E1 determined the up-regulation of il-1β, il-6, and il-8 (p < 0.05); however, this supplementation did not significantly contribute to limiting the oxidative stress. Nevertheless, no detrimental effect on color and the other physical characteristics was observed. These results suggest that a low level of HBP_SFE could be potentially utilized in aquaculture as an immunostimulant more than an antioxidant, but further investigation is necessary.
Collapse
Affiliation(s)
- Rosaria Arena
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Adja Cristina Lira de Medeiros
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
| | - Giulia Secci
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124 Pisa, Italy;
| | - Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via Delpino 1, 80137 Napoli, Italy; (F.B.); (G.P.)
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
- Institute of Marine Biology, University Consortium of the Province of Trapani, Via Barlotta 4, 91100 Trapani, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry-DAGRI, University of Firenze, Via Delle Cascine 5, 50144 Firenze, Italy; (A.C.L.d.M.); (G.S.)
- Correspondence: ; Tel.: +39-055-2755590
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Sea Sciences-DiSTeM, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy; (R.A.); (S.M.); (A.S.); (C.M.M.)
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, Via Delpino 1, 80137 Napoli, Italy; (F.B.); (G.P.)
| |
Collapse
|