1
|
Azri-Shah NN, Yusoff NAH, Abdullah F, Ishak AN, Husin NM, Wee HB, Jones JB, Ikhwanuddin M, Nor SAM, Hassan M. Genetic and Population Diversity of Temnocephalids Associated with the Invasive Crayfish Cherax quadricarinatus in Malaysia. Acta Parasitol 2025; 70:112. [PMID: 40382738 DOI: 10.1007/s11686-025-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE A previous study revealed that temnocephalids Diceratocephala boschmai, Craspedella pedum, and Decadidymus sp. were highly prevalent in Cheraq quadricarinatus in Melaka and Johor, Malaysia. METHODS Herein, study was conducted to extract temnocephalids from C. quadricarinatus and identified using a molecular approach via two DNA markers: 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit I (CO1). Thereafter, the population diversity of D. boschmai in Malaysia using the CO1 DNA marker was analysed to visualize the genetic associations among populations. RESULTS The analysis of 16 variable (segregating) sites in the CO1 gene alignment of sequence from D. boschmai revealed a calculated haplotype diversity of 0.1266 among populations which indicates genetic variation within the studied groups. Additionally, the determination of nucleotide diversity (II) yielded a value of 0.0035, and Tajima's D neutrality test yielded a negative value for all populations, suggesting no significant departure from neutral evolution. CONCLUSION AMOVA analysis indicated that the genetic variation or polymorphism is primarily contributed within populations (95%) compared to between populations (4%).
Collapse
Affiliation(s)
- Norhan N Azri-Shah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nor Asma Husna Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Farizan Abdullah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Najmi Ishak
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Norainy Mohd Husin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Hin Boo Wee
- Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - John Brian Jones
- Murdoch University, Perth Campus, 90 South Street, Murdoch WA, 6150, Australia
| | - Muhammad Ikhwanuddin
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Chen D, Xin Y, Teng J, Zhao X, Lu J, Li Y, Wang H. Comparative transcriptomic and molecular biology analyses to explore potential immune responses to Vibrio parahaemolyticus challenge in Eriocheir sinensis. Front Cell Infect Microbiol 2024; 14:1456130. [PMID: 39760091 PMCID: PMC11695290 DOI: 10.3389/fcimb.2024.1456130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Vibrio parahaemolyticus is a significant pathogen affecting shrimp and crab farming, particularly strains carrying genes associated with acute hepatopancreatic necrosis syndrome. However, the immune response of Eriocheir sinensis to V. parahaemolyticus infection remains unclear. To address this knowledge gap, an experiment was conducted to establish a V. parahaemolyticus infection model. This model aimed to compare pathological damage and enzyme activity changes in E. sinensis hepatopancreas tissue at various infection time points, and to examine transcriptome changes in individuals exhibiting different clinical symptoms of infection. The results showed that intramuscular injection of 1.78 × 106 CFU/mL of V. parahaemolyticus for 24 hours resulted in a 50% mortality rate among the experimental animals. Pathological findings revealed that the infection led to a change in color of the hepatopancreas tissue from bright yellow to white, diffuse tissue cell distribution, and hepatopancreatic necrosis. Additionally, there was a significant increase in the activities of alanine aminotransferase and aspartate aminotransferase in the hepatopancreas (P < 0.01). Furthermore, the activities of superoxide dismutase, total antioxidant capacity, phenoloxidase, alkaline phosphatase, and acid phosphatase initially increased and then decreased. RNA-seq analysis revealed 11,662 differentially expressed genes compared to the susceptible group and control group, with 6,266 genes up-regulated and 5,396 genes down-regulated. When comparing the susceptible group to the disease-resistant group, 13,515 differentially expressed genes were identified, with 7,694 genes up-regulated and 5,821 genes down-regulated. Finally, comparison between the disease-resistant group and control group yielded 13,515 differentially expressed genes, with 7,631 genes up-regulated and 3,111 genes down-regulated. Differential gene enrichment analysis revealed pathways such as phagosomes, cancer pathways, proteoglycans in cancer, ribosomes, protein processing in the endoplasmic reticulum, starch and sucrose metabolism, and lysosome signaling pathways. Furthermore, 342 immune-related genes with differential expression were identified, primarily enriched in 22 pathways linked to cell signaling. These genes play a crucial role in defense against bacterial invasion and immune response regulation through various signaling pathways. Overall, this study provides valuable insights into the defense mechanisms and understanding of Chinese mitten crab immunity against bacterial infection by examining changes in mRNA, enzyme activity, and hepatopancreatic damage during infection.
Collapse
Affiliation(s)
- Duanduan Chen
- Phage Research Center of Liaocheng University, Liaocheng, China
- Shandong Agricultural University, Taian, China
| | - Yunteng Xin
- Shandong Agricultural University, Taian, China
- Yantai Jinghai Marine Fishing Co, Yantai, China
| | - Jian Teng
- Phage Research Center of Liaocheng University, Liaocheng, China
| | - Xiaodong Zhao
- Shandong Vocational Animal Science and Veterinary College, Weifang, China
| | - Jianbiao Lu
- Phage Research Center of Liaocheng University, Liaocheng, China
| | - Yubao Li
- Phage Research Center of Liaocheng University, Liaocheng, China
| | - Hui Wang
- Phage Research Center of Liaocheng University, Liaocheng, China
- Shandong Agricultural University, Taian, China
| |
Collapse
|
3
|
Peng B, Lin J, Wan H, Zou P, Zhang Z, Wang Y. Identification of toll-like receptor family and the immune function of new Sptlr-6 gene of Scylla paramamosain. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109609. [PMID: 38705549 DOI: 10.1016/j.fsi.2024.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/25/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.
Collapse
Affiliation(s)
- Bohao Peng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jiaming Lin
- Xiamen Ocean Vocational College, Xiamen, 361100, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
4
|
Pinkaew U, Choolert C, Vaniksampanna A, Pasookhush P, Longyant S, Chaivisuthangkura P. Characterization of a novel immune deficiency gene of Macrobrachium rosenbergii reveals antibacterial and antiviral defenses. JOURNAL OF AQUATIC ANIMAL HEALTH 2024; 36:99-112. [PMID: 38613162 DOI: 10.1002/aah.10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE We sought to identify and characterize an immune deficiency (IMD) homolog from the giant freshwater prawn (also known as the giant river prawn) Macrobrachium rosenbergii. The IMD is a death-domain-containing protein that plays a crucial role as an adaptor protein in the IMD pathway-one of the most important response mechanisms to viral and bacterial invasion of invertebrates. METHODS An IMD homolog gene from M. rosenbergii (MrIMD) was isolated using rapid amplification of complementary DNA ends. The tissue distribution and response to immune challenge of MrIMD were analyzed by real-time reverse transcription polymerase chain reaction to understand the regulatory mechanism of MrIMD messenger RNA (mRNA) expression in M. rosenbergii. RESULT The open reading frame of MrIMD comprised 555 nucleotides encoding a protein consisting of 184 amino acids, with a conserved death domain at the C-terminus. The MrIMD protein demonstrated 53-74% similarity with IMDs from other crustaceans; the highest similarity was with the IMD from the oriental river prawn M. nipponense. Gene expression analysis revealed that MrIMD mRNA levels were highest in gill tissues. After Aeromonas hydrophila stimulation, MrIMD was significantly upregulated in the muscle, gills, and intestine, whereas there was no significant difference in the hemocytes and hepatopancreas. In the case of Macrobrachium rosenbergii nodavirus stimulation, MrIMD was dramatically upregulated in the muscle and hepatopancreas, whereas downregulation was observed in the gills. CONCLUSION These results suggest that the MrIMD gene may play different roles in response to gram-negative bacteria and viral infection and plays a crucial role in innate immunity as an important key molecule in the defense against bacterial and viral infections.
Collapse
Affiliation(s)
- Utsanee Pinkaew
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Chanitcha Choolert
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | | | - Phongthana Pasookhush
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwaporn Longyant
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant, and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Parin Chaivisuthangkura
- Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant, and Parasite Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhao Y, Jia H, Deng H, Ge C, Xing W, Yu H, Li J. Integrated microbiota and multi-omics analysis reveal the differential responses of earthworm to conventional and biodegradable microplastics in soil under biogas slurry irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168191. [PMID: 37907108 DOI: 10.1016/j.scitotenv.2023.168191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
As one of the promising alternatives of conventional plastic mulching film (C-PMF), biodegradable plastic mulching films (B-PMF) were employed in agronomy production to alleviate the environmental burden of C-PMF. However, information regarding the potential toxicity effects of biodegradable microplastics (MPs) in soil still in scarcity, and the available findings were found to be controversial. Additionally, little is known about the molecular toxicity effects of conventional and biodegradable MPs on terrestrial organisms. Thus, 5 % (w/w) biodegradable (polylactic acid, PLA) and conventional (polyvinylchloride, PVC; low-density polyvinylchloride, LDPE) MPs were employed to assess the toxicity effects on Eisenia fetida in agricultural soil with biogas slurry irrigation. In the present study, transcriptomic, metabolomic profiles and individual indexes were selected to reveal the toxicity mechanisms from molecular level to the individual response. Furthermore, dysbiosis of bacterial community in gut was also investigated for obtaining comprehensive knowledge on the MPs toxicity. At the end of the exposure, the number of survival earthworms after MPs exposure was significantly reduced. Compared with the initial body weight, PLA and LDPE increased the biomass of earthworms after MPs exposure, while no significant influence on the biomass was observed in PVC treatment. Microbacterium, Klebsiella and Chryseobacterium were significantly enriched in earthworm gut after PLA, PVC and LDPE exposure, respectively (p < 0.05). Transcriptomic and metabolomic analysis revealed that PLA exposure induced neurotransmission disorder and high energetic expenditure in earthworms. However, PVC and LDPE inhibited the nutrient absorption efficiency and activated the innate immunity responses of earthworms. The PLS-SEM results showed that the effects of MPs were dominated by the polymer types, and hence, significantly and directly influence the gut bacterial community of earthworms. This study provides a better understanding of the similarities and discrepancies in toxicity effects of biodegradable and conventional MPs from the perspectives of individual, gut bacterial community, transcriptome and metabolome.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huiting Jia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Hui Deng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Wenzhe Xing
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Huamei Yu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China.
| | - Jiatong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China; Key Laboratory of Environmental Toxicology, Hainan University, Haikou 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| |
Collapse
|
6
|
Wan H, Mu S, Baohua D, Guo S, Kang X. Genome-wide investigation of toll-like receptor genes (TLRs) in Procambarus clarkia and their expression pattern in response to black may disease. FISH & SHELLFISH IMMUNOLOGY 2022; 131:775-784. [PMID: 36332795 DOI: 10.1016/j.fsi.2022.10.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
As a crucial component of pattern-recognition receptors (PRRs) that recognizing pathogen-associated molecular patterns (PAMPs) and defending against invading pathogens, the Toll-like receptors (TLRs) have been paid extensive attention. While the identification and functional roles of TLRs in innate immunity have been reported in a plenty of organisms, the systematic knowledge of TLRs is still lacking in the red swamp crayfish (Procambarus clarkia). In current study, a total of 7 tlr genes were identified in P. clarkia based on the published transcriptome and genome data. The PcTLRs length varied from 939 to 1517aa and contain typical domains of TLR protein, including transmembrane region, varied LRR and TIR domains. 7 Pctlr genes were distributed in 5 chromosomes and 2 scaffolds. The expression pattern of different Pctlr genes in different tissues (hepatopancreas, gill and muscle) and in response to black may disease (BMD) showed significant difference. In addition, 5 proteins that might interact with PcTLR-2 were predicted, among them the expression pattern of dorsal and relish was consistent with Pctlr-2 in three tissues, while the other genes were not. The PcTLR-2-Dorsal/Relish pathway might play crucial roles in response to BMD infection. The results provided a theoretical foundation for further studies on the molecular mechanisms of TLRs in BMD infection in the red swamp crayfish and provided reference for the research of other crustacean species.
Collapse
Affiliation(s)
- Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province, 071002, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China
| | - Duan Baohua
- College of Life Sciences, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|