1
|
Zhao Y, Chang D, Zheng Y, Zhang Y, Wang Y, Bao X, Sun G, Feng Y, Li Z, Liu X, Yang J. Comparative transcriptome analysis reveals differences in immune responses to copper ions in Sepia esculenta under high-temperature conditions. BMC Genomics 2025; 26:262. [PMID: 40097976 PMCID: PMC11917092 DOI: 10.1186/s12864-025-11418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Sepia esculenta is one of the most abundant extant squid populations in Southeast Asia and is of interest due to its rapid reproductive rate and high commercial value. In recent years, with the rapid development of industrialization, issues such as global warming and heavy metal pollution in the oceans have emerged, posing a serious threat to the life activities of marine organisms. In this study, we used transcriptomic techniques to investigate the differences in Cu exposure immune responses in S. esculenta larvae under different temperature conditions. The enrichment of solute carrier family (SLC) genes and genes related to DNA replication and damage was significantly higher in the CuT group than in the Cu group. Functional enrichment analysis revealed that the FcγR-mediated phagocytosis and autophagy pathways were enriched in the CuT group. Based on the analysis of differentially expressed genes (DEGs) and functional enrichment results, we can preliminarily infer that the CuT group caused more severe disruption of intercellular ion transport and DNA replication and repair in larvae compared to the Cu group. This may have further interfered with the normal physiological activities of S. esculenta larvae. Overall, at high temperatures, Cu exposure induces a more intense inflammatory response. The results of this study provide a theoretical foundation for researchers to further understand the effects of environmental factors on the immunity of S. esculenta larvae, as well as preliminary insights into the enhanced toxic effects of metallic copper on aquatic organisms under high-temperature conditions.
Collapse
Affiliation(s)
- Yancheng Zhao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Deyuan Chang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanxuan Zheng
- Rushan Marine and Fishery Monitoring and Hazard Mitigation Center, Rushan, 264500, China
| | - Yuwei Zhang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yongjie Wang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Zan Li
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Huang Q, Yu J, Peng R, Jiang M, Han Q, Jiang X. Effects of Cu(Ⅱ) stress on embryonic development, oxidative stress response, cholinergic system and energy metabolism in the Sepiella maindroni. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117775. [PMID: 39862694 DOI: 10.1016/j.ecoenv.2025.117775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
In order to investigate the causes of population degradation and resource decline, this thesis investigated the ecotoxicological effects of heavy metal Cu(Ⅱ) on the embryonic development of Sepiella maindroni. Results indicate significant effects of Cu(Ⅱ) concentrations on the developmental toxicity, teratogenicity, and lethality of S. maindroni embryos. Different concentrations of Cu(Ⅱ) caused varying degrees of malformations in embryos, altered developmental rates, reduced hatchability and hatchling quality, and increased malformation and mortality of hatchlings. At the same time, Cu(Ⅱ) exposure led to an increase in the content of the lipid peroxidation product malondialdehyde (MDA) and a significant decrease in the activity of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT]), energy-metabolizing enzymes (adenylate kinase [AK]), and cholinergic-related enzymes (acetylcholinesterase [AChE], choline acetyltransferase [ChAT]). In conclusion, when the concentration of Cu(Ⅱ) in the environment is ≥ 0.01 mg/L, it causes significant lethality toxicity, developmental toxicity and teratogenicity in S. maindroni embryos. These effects are likely related to Cu(Ⅱ)-induced stress impacting the antioxidant capacity, energy metabolism, and cholinergic system. Ultimately, these toxic effects may lead to population degradation and resource decline in fishery organisms by affecting the early replenishment process of fisheries.
Collapse
Affiliation(s)
- Qilong Huang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiawen Yu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ruibing Peng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Maowang Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiamin Jiang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Chang D, Zhao Y, Ren Z, Zhu X, Bao X, Wang Y, Wang W, Cui C, Liu X, Li Z, Shan Y, Yang J. Transcriptome analysis reveals the immune response mechanism of golden cuttlefish (Sepia esculenta) larvae exposed to ink. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101355. [PMID: 39541713 DOI: 10.1016/j.cbd.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
The golden cuttlefish (Sepia esculenta), a significant cephalopod in the Yellow and Bohai Seas of China, is highly esteemed for its exceptional medicinal and commercial value. The natural resources of the S. esculenta are currently facing depletion due to the ongoing environmental degradation and overfishing. Secreted by the ink sac of the S. esculenta, the ink contains a diverse array of nutrients and active ingredients, which can exert a substantial impact on biological immune cells' proliferation and differentiation, the occurrence of inflammation, autophagy, along with other processes pertaining to immune response, and thus affects their survival. In the actual production, the high-density artificial cultivation and transportation process of S. esculenta often leads to large-scale inkjet phenomenon, posing a significant threat to the survival of this species. The present study employed RNA-seq as the basis to investigate the mechanisms of immune response in S. esculenta larvae when exposed to ink. Conduct functional enrichment analysis (GO and KEGG) as well as protein-protein interaction (PPI) network analysis for the 1951 differentially expressed genes (DEGs). In addition, this study is the pioneering attempt to employ a combined analysis of KEGG and PPI network construction and further reveal a set of 20 key genes associated with immunity, which have higher numbers of PPI or KEGG pathway participation. It is evident that the ink exposure has an impact on the inflammatory response, immune cell propagation and specialization, transmission of signals in the immune system, and autophagy in S. esculenta larvae. Through the enrichment analysis of genes and pathway functions, we understood the impact of ink exposure on the larvae of S. esculenta exhibit immune resistance, further improved our overall comprehension regarding the immune functionality exhibited by mollusks, and contributed to improving the survival rate of S. esculenta in factory farming.
Collapse
Affiliation(s)
- Deyuan Chang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Yancheng Zhao
- Fisheries College, Ludong University, Yantai 264025, China
| | - Ziwen Ren
- Shandong Yellow River Delta Marine Technology Co., Ltd., Dongying 257200, China
| | - Xueyu Zhu
- Fisheries College, Ludong University, Yantai 264025, China
| | - Xiaokai Bao
- Fisheries College, Ludong University, Yantai 264025, China
| | - Yongjie Wang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Weijun Wang
- Fisheries College, Ludong University, Yantai 264025, China
| | - Cuiju Cui
- Fisheries College, Ludong University, Yantai 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zan Li
- Fisheries College, Ludong University, Yantai 264025, China.
| | - Yuan Shan
- National Fisheries Technology Extension Center & China Society of Fisheries, Beijing 100125, China.
| | - Jianmin Yang
- Fisheries College, Ludong University, Yantai 264025, China.
| |
Collapse
|
4
|
Yang LY, Zhu QH, Chen JY, Lin LB, Liang MZ, Zhang QL. Genome-wide transcriptomics and microRNAomics analyses uncover multi-faceted mechanisms to cope with copper stress in ancient macrobenthos amphioxus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131594. [PMID: 37330373 DOI: 10.1016/j.jhazmat.2023.131594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
The mechanisms underlying the toxicity of environmental stress are unclear for marine macrobenthos. Copper/Cu has posed the most serious threats to amphioxus, an ancient and model benthic cephalochordate. Herein, a dynamic change in the physiological parameters (GR, SOD, ATP, and MDA) was detected with ROS accumulation in Branchiostoma belcheri exposed to 0.3 mg·L-1 Cu. Transcriptomes and microRNAomes of B. belcheri were generated to investigate the molecular mechanisms by which this amphioxus copes with Cu exposure. Time-specific genes identified at different time points after exposure were involved in the stimulus and immune response, detoxification and ionic homeostasis, aging and the nervous system, sequentially, with prolongation of exposure time, forming a dynamic process of molecular response to Cu stress. In total, 57 differentially expressed miRNAs were identified under Cu stress. Transcriptomics-miRNAomics analyses indicate that these miRNAs targeted genes associated with many key biological processes such as xenobiotics degradation, oxidative stress, and energy metabolism. The constructed miRNA-mRNA-pathway network uncovered a broad post-transcriptional regulatory mechanism in B. belcheri to cope with Cu stress. Overall, this integrated analyses show that enhanced defense response, accelerated ROS elimination, and repressed ATP production constitute a comprehensive strategy to cope with Cu toxicity in the ancient macrobenthos.
Collapse
Affiliation(s)
- Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Qian-Hua Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Yuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ming-Zhong Liang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Li Z, Jiang L, Xu T, Bao X, Wang W, Feng Y, Yang J, Ma J. Preliminary Exploration of Metabolic Mechanisms in Copper-Exposed Sepia esculenta Based on Transcriptome Analysis. Metabolites 2023; 13:metabo13040471. [PMID: 37110131 PMCID: PMC10141105 DOI: 10.3390/metabo13040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
As a common and high-concentration heavy metal in the ocean, Cu can induce metal toxicity and significantly affect the metabolic function of marine organisms. Sepia esculenta is an important economic cephalopod found along the east coast of China, the growth, movement, and reproduction of which are all affected by heavy metals. Hitherto, the specific metabolic mechanism of heavy-metal exposure in S. esculenta is still unclear. In this study, we identified 1131 DEGs through transcriptome analysis of larval S. esculenta within 24 h of Cu exposure. GO and KEGG functional enrichment analysis results indicated that Cu exposure may affect purine metabolism, protein digestion and absorption, cholesterol metabolism, and other metabolic processes in S. esculenta larvae. It is worth noting that in this study we explore metabolic mechanism of Cu-exposed S. esculenta larvae through the comprehensive analysis of protein–protein interaction network and KEGG enrichment analysis for the first time and find 20 identified key and hub genes such as CYP7A1, CYP3A11, and ABCA1. Based on their expression, we preliminarily speculate that Cu exposure may inhibit multiple metabolic processes and induce metabolic disorders. Our results lay a foundation for further understanding the metabolic mechanism of S. esculenta against heavy metals and provide theoretical help for S. esculenta artificial breeding.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lisheng Jiang
- Yantai Laishan District Fisheries and Marine Service Station, Yantai 264003, China
- Shandong Marine Resource and Environment Research Institute, Yantai 265503, China
| | - Tao Xu
- Shandong Fishery Development and Resource Conservation Center, Jinan 250013, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
- Correspondence: (J.Y.); (J.M.)
| | - Jingjun Ma
- Yantai Laishan District Fisheries and Marine Service Station, Yantai 264003, China
- Correspondence: (J.Y.); (J.M.)
| |
Collapse
|
6
|
Vidakis N, Petousis M, Papadakis VM, Mountakis N. Multifunctional Medical Grade Resin with Enhanced Mechanical and Antibacterial Properties: The Effect of Copper Nano-Inclusions in Vat Polymerization (VPP) Additive Manufacturing. J Funct Biomater 2022; 13:jfb13040258. [PMID: 36412900 PMCID: PMC9680439 DOI: 10.3390/jfb13040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Vat photopolymerization (VPP) is an additive manufacturing process commonly used in medical applications. This work aims, for the first time in the literature, to extend and enhance the performance of a commercial medical-grade resin for the VPP process, with the development of nanocomposites, using Copper (Cu) nanoparticles as the additive at two different concentrations. The addition of the Cu nanoparticles was expected to enhance the mechanical properties of the resin and to enable biocidal properties on the nanocomposites since Cu is known for its antibacterial performance. The effect of the Cu concentration was investigated. The nanocomposites were prepared with high-shear stirring. Specimens were 3D printed following international standards for mechanical testing. Their thermal and spectroscopic response was also investigated. The morphological characteristics were examined. The antibacterial performance was evaluated with an agar well diffusion screening process. The experimental results were analyzed with statistical modeling tools with two control parameters (three levels each) and eleven response parameters. Cu enhanced the mechanical properties in all cases studied. 0.5 wt.% Cu nanocomposite showed the highest improvement (approximately 11% in tensile and 10% in flexural strength). The antibacterial performance was sufficient against S. aureus and marginal against E. coli.
Collapse
Affiliation(s)
- Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810379227
| | - Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Vassilis M. Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|