1
|
Li W, Feng Y, Liu H, Dreyer N, Wong YH. Transcriptome analysis of interna rootlets of the rhizocephalan Parasacculina sinensis reveals potential mechanisms of parasite host control. BMC Genomics 2025; 26:177. [PMID: 39987437 PMCID: PMC11846380 DOI: 10.1186/s12864-025-11315-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The endoparasitic rhizocephalan Parasacculina sinensis has a radically simplified morphology and primarily infests decapods crustaceans. Rhizocephalan barnacles usually absorb nutrients from the host through a complex rootlet system (the interna), and also change the morphology, physiology and behavior of their hosts. However, little is known about the transcriptomic landscape, ultrastructural details and gene expression of the interna rootlets in the group. In this study, we investigated the structural and molecular signatures of the interna of P. sinensis by using detailed histological staining and transcriptomic analyses. RESULTS The interconnected F-actin nodal network, lipid droplets, and nucleus of interna rootlets were visualized using fluorescence straining. We successfully obtained a clean transcriptome of P. sinensis and conducted functional analyses of interna embedded within host hepatopancreas, claw muscle, and eyestalk. The gene ontology (GO) terms related to translation, metabolic process, biosynthetic process, cellular process were highly expressed in the top 10% transcripts from the interna. The GO category of shared differential expression of genes (DEGs) among internae was related to embryonic development. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway neuroactive ligand-receptor interaction and the GO term neurotransmitter transporter activity were identified in the shared DEGs among internae. The interna entangled within host hepatopancreas, eyestalk and claw muscle fibers had similarities and differences in the functional biology. Additionally, the interna specific candidate genes probably involved in host immune, lipid metabolism, molting and growth were identified. CONCLUSIONS Our study demonstrates an in-depth function of interna rootlets of P. sinensis and reveals potential mechanisms of parasite host control. This study provides novel information to further investigate the evolutionary drivers of parasitism in barnacles.
Collapse
Affiliation(s)
- Wenjie Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Yiheng Feng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Haocheng Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Niklas Dreyer
- Nanopore Sequencing Platform, Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, Guangdong, China.
- Present address: Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
2
|
Si S, Zhang X, Yu Y, Zhong X, Zhang X, Yuan J, Chu KH, Li F. Molecular mechanisms of Mmd2 gene in regulating growth of the Pacific white shrimp Litopenaeus vannamei. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:50-65. [PMID: 40027329 PMCID: PMC11871217 DOI: 10.1007/s42995-024-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/28/2024] [Indexed: 03/05/2025]
Abstract
Growth of the Pacific white shrimp Litopenaeus vannamei, the most important farmed crustacean, has consistently been a focal point for breeders. Over the past decades, some candidate genes for shrimp growth have been identified. However, further research is needed to elucidate the molecular regulatory mechanism of these genes. LvMmd2 was previously identified as a candidate gene that may inhibit the growth of L. vannamei. In this study, we analyzed the genotype and expression of the LvMmd2 gene in a breeding family and indicated its role as a growth-inhibiting gene. We found that LvMmd2 co-localized with its homolog LvPAQR3 at the Golgi apparatus. Using co-immunoprecipitation (Co-IP) and DUAL membrane system yeast two-hybrid (MbY2H), we indicated the interactions between LvMmd2 and LvPAQR3, LvPAQR3 and LvRaf1, as well as LvMmd2 and LvRho. These results suggest that LvMmd2 directly and indirectly regulates the Ras signaling pathway. Furthermore, we show that the LvMmd2 gene may indirectly affect the PI3K/AKT, insulin, and Hippo signaling pathways to regulate cell proliferation and differentiation via LvPAQR3 and LvRaf1. Through transcriptome and MbY2H analyses, we have also revealed the interaction between LvMmd2 and proteins involved in growth, immunity, protein transport, synthesis, and modification. These findings demonstrate the various molecular pathways through which LvMmd2 regulates L. vannamei growth. This study provides insights into the mechanism of shrimp growth regulated by Mmd2, enhances our understanding of LvMmd2 function, and highlights its potential application in shrimp breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00273-7.
Collapse
Affiliation(s)
- Shuqing Si
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaojun Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Xiaoyun Zhong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoxi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jianbo Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ka Hou Chu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 510301 China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong China
| | - Fuhua Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237 China
- College of Earth Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
3
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
4
|
Wan H, Yu L, Cui X, Guo S, Mu S, Kang X. Comparative transcriptome analysis reveals the different responding mechanisms of ovary and hepatopancreas following polyI:C challenge in Macrobrachium nipponense. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101289. [PMID: 38986341 DOI: 10.1016/j.cbd.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The ovary in mammals has developed specialized mechanisms for protection against pathogen infections; however, the understanding of the innate immune system in the ovary of crustaceans is still limited. To elucidate the ovary's defense mechanisms in response to viral challenges, we subjected oriental river prawns (Macrobrachium nipponense) to poly I:C, a double-stranded RNA analog that emulates viral dsRNA, and analyzed the ovary's transcriptome profiles. Concurrently, RNA-seq analysis was performed on the hepatopancreas, a well-recognized immune-related tissue, following poly I:C challenge to investigate the distinct response mechanisms of the ovary and hepatopancreas and to gain a comprehensive understanding of the immune responses in both tissues. The results indicate that 1368 genes are differentially expressed in the ovary, with 903 genes upregulated and 465 genes downregulated. Subsequent analysis reveals that these differentially expressed genes (DEGs) include numerous genes associated with innate immunity, such as members of the C-type lectin, fibrinogen-related protein (Frep), Toll-like receptor, and NOD-like receptor (NLR) gene families, as well as acid phosphatase, scavenger receptor, crustin, Down syndrome cell adhesion molecule (Dscam), hemocyanin, and lipopolysaccharide and beta-1,3-glucan binding protein (LGBP). Furthermore, the DEGs include several genes related to ovary development, such as sox8, vitellogenin, progranulin, cyclin-dependent kinase, ecdysone receptor, frizzled, and members of the Fox gene family. In the hepatopancreas, a total of 729 DEGs were identified. Comparison of the DEGs in both tissues indicates that only 91 genes are common to both groups, highlighting significant tissue-specific responses to poly I:C stimulation. This study aims to enhance our understanding of the immune protective mechanisms employed by the ovary in response to pathogen exposure and establishes a foundation for investigating ovarian reproductive immunity in crustaceans.
Collapse
Affiliation(s)
- Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Lei Yu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
5
|
Ma L, Wang H, Liu Y, Sun J, Yan X, Lu Z, Hao C, Qie X. Single von Willebrand factor C-domain protein-2 confers immune defense against bacterial infections in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 279:135241. [PMID: 39233173 DOI: 10.1016/j.ijbiomac.2024.135241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Single-domain von Willebrand factor type C proteins (SVWCs), primarily found in arthropods, responds to infections caused by various pathogens. Three SVWCs have been identified in the silkworm and BmSVWC2 might play a crucial role in the immune system. However, the regulatory mechanism of BmSVWC2 remains largely unknown. This study aimed to investigate the biochemical functions of BmSVWC2 in the immune system of B. mori comprehensively. Phylogenetic analysis revealed that BmSVWC1, BmSVWC3, and BmSVWC2 were distributed in diverse groups, suggesting distinct biochemical functions. The mRNA and protein levels of BmSVWC2 increased significantly in response to bacterial infection. BmSVWC2 exhibited clear binding activity to the polysaccharide pathogen-associated molecular patterns of bacteria and fungi, enhancing bacterial clearance in vivo but not in vitro. RNA-sequencing assays of the fat body and hemocytes showed that numerous immune genes were markedly up-regulated with higher level of BmSVWC2, primarily affecting recognition, signaling, and response production of the Toll and immune deficiency (IMD) signaling pathways. This led to the production of various antimicrobial peptides and significant antibacterial activities in the hemolymph. BmSVWC2 up-regulated phagocytosis-related genes in the fat body and hemocytes, and phagocytosis assays confirmed that BmSVWC2 improved the phagocytic ability of hemocytes against bacteria. Additionally, BmSVWC2 induced the expression of nitric oxide synthetase (NOS) in the fat body, and bioassays confirmed that BmSVWC2 increased NOS activity in the fat body and hemolymph, resulting in nitric oxide accumulation. However, BmSVWC2 did not affect phenoloxidase activity, despite it caused differential expression of a few serine proteases and serine protease inhibitors. Co-immunoprecipitation and mass spectrometry assays showed that BmSVWC2 interacted with 30 K proteins, such as 30 K protein 2, 30 K pBmHPC-19, 30 K 19G1-like, 30 K protein 8, 30 K protein 7, 30 K pBmHPC-23, and low molecular mass lipoprotein 4-like. Our study provides a comprehensive characterization of BmSVWC2 and elucidates the mechanism underlying its regulation of immune responses activation.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Han Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
6
|
Chen M, Huang WK, Yao Y, Wu SM, Yang YX, Liu WX, Luo G, Wei SF, Zhang H, Liu HM, Wang B. Heterologous expression of the insect SVWC peptide WHIS1 inhibits Candida albicans invasion into A549 and HeLa epithelial cells. Front Microbiol 2024; 15:1358752. [PMID: 38873147 PMCID: PMC11169590 DOI: 10.3389/fmicb.2024.1358752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Candida albicans (C. albicans), a microbe commonly isolated from Candida vaginitis patients with vaginal tract infections, transforms from yeast to hyphae and produces many toxins, adhesins, and invasins, as well as C. albicans biofilms resistant to antifungal antibiotic treatment. Effective agents against this pathogen are urgently needed. Antimicrobial peptides (AMPs) have been used to cure inflammation and infectious diseases. In this study, we isolated whole housefly larvae insect SVWC peptide 1 (WHIS1), a novel insect single von Willebrand factor C-domain protein (SVWC) peptide from whole housefly larvae. The expression pattern of WHIS1 showed a response to the stimulation of C. albicans. In contrast to other SVWC members, which function as antiviral peptides, interferon (IFN) analogs or pathogen recognition receptors (PRRs), which are the prokaryotically expressed MdWHIS1 protein, inhibit the growth of C. albicans. Eukaryotic heterologous expression of WHIS1 inhibited C. albicans invasion into A549 and HeLa cells. The heterologous expression of WHIS1 clearly inhibited hyphal formation both extracellularly and intracellularly. Furthermore, the mechanism of WHIS1 has demonstrated that it downregulates all key hyphal formation factors (ALS1, ALS3, ALS5, ECE1, HWP1, HGC1, EFG1, and ZAP1) both extracellularly and intracellularly. These data showed that heterologously expressed WHIS1 inhibits C. albicans invasion into epithelial cells by affecting hyphal formation and adhesion factor-related gene expression. These findings provide new potential drug candidates for treating C. albicans infection.
Collapse
Affiliation(s)
- Ming Chen
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Wei-Kang Huang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yang Yao
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi-Mei Wu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-Xin Yang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wen-Xia Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Gang Luo
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shao-Feng Wei
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Hua Zhang
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Hong-Mei Liu
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| | - Bing Wang
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province & School of Biology and Engineering (Modern Industry College of Health Medicine) & School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang, Guizhou, China
| |
Collapse
|
7
|
Labropoulou V, Wang L, Magkrioti C, Smagghe G, Swevers L. Single domain von Willebrand factor type C "cytokines" and the regulation of the stress/immune response in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22071. [PMID: 38288483 DOI: 10.1002/arch.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024]
Abstract
The single domain von Willebrand factor type C (SVWC) appears in small secreted peptides that are arthropod-specific and are produced following environmental stress or pathogen exposure. Most research has focused on proteins with SVWC domain that are induced after virus infection and are hypothesized to function as "cytokines" to regulate the innate immune response. The expansion of SVWC genes in insect species indicates that many other functions remain to be discovered. Research in shrimp has elucidated the adaptability of Vago-like peptides in the innate immune response against bacteria, fungi and viruses after activation by Jak-STAT and/or Toll/Imd pathways in which they can act as pathogen-recognition receptors or cytokine-like signaling molecules. SVWC factors also appear in scorpion venoms and tick saliva, underlining their versatility to acquire new functions. This review discusses the discovery and function of SVWC peptides from insects to crustaceans and chelicerates and reveals the enormous gaps in knowledge that remain to be filled to understand this enigmatic group of secreted peptides.
Collapse
Affiliation(s)
- Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Luoluo Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Christiana Magkrioti
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| | - Guy Smagghe
- Department of Biology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Entomology, Guizhou University, Guizhou, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, Athens, Greece
| |
Collapse
|