1
|
Xie W, Ma H, Gao M, Du D, Liu L, Sui L. Effect of Amorphous Halomonas-PHB on Growth, Body Composition, Immune-Related Gene Expression and Vibrio anguillarum Resistance of Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂) Juveniles. Animals (Basel) 2024; 14:2649. [PMID: 39335239 PMCID: PMC11428417 DOI: 10.3390/ani14182649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂). In experiment I, juvenile groupers were fed basal diets supplemented with 3% Halomonas-PHB (3% HM-PHB) containing 1.4% PHB and 3% Halomonas (3% HM) without PHB, as well as a control diet, for seven weeks. The results showed no significant difference in survival rate, weight gain, and crude fat content between the 3% HM-PHB group and the control group; however, the crude protein of the 3% HM-PHB group was significantly lower than that of the control group. Furthermore, supplementation with 3% HM-PHB increased the fatty acids content in fish muscles, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA. In experiment II, groupers were fed a basal diet supplemented with 6.5% Halomonas-PHB (6.5% HM-PHB) containing 3% PHB and 6.5% Halomonas (6.5% HM) containing no PHB, as well as a basal diet (Control). After seven weeks of rearing, the fish were challenged with Vibrio anguillarum for 48 h. Although no significant difference in survival rate and growth was observed among different groups, the dietary supplement of 6.5% Halomonas-PHB improved the survival rate of V. anguillarum challenged grouper and significantly increased the gene expressions of catalase (CAT) and superoxide dismutase (SOD) in blood, interleukin 1 (IL1) and interleukin 10 (IL10) in the liver, spleen, head kidney, and blood (p < 0.05). In conclusion, dietary supplementation of Halomonas-PHB had no significantly positive effect on fish growth performance but increased the content of fatty acids, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA in fish muscle; it also improved the V. anguillarum resistance, possibly through increasing immune-related gene expression in different tissues and organs. Our findings offer compelling evidence that Halomonas-PHB can be utilized as a feed additive in intensive grouper farming to enhance the groupers' resistance to Vibrio.
Collapse
Affiliation(s)
- Wei Xie
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haoran Ma
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meirong Gao
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongdong Du
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liangsen Liu
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liying Sui
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science & Technology, Tianjin 300457, China
- Asian Regional Artemia Reference Center, College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Alvanou MV, Feidantsis K, Staikou A, Apostolidis AP, Michaelidis B, Giantsis IA. Probiotics, Prebiotics, and Synbiotics Utilization in Crayfish Aquaculture and Factors Affecting Gut Microbiota. Microorganisms 2023; 11:1232. [PMID: 37317206 DOI: 10.3390/microorganisms11051232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
Aquaculture is affected by numerous factors that may cause various health threats that have to be controlled by the most environmentally friendly approaches. In this context, prebiotics, probiotics, and synbiotics are frequently incorporated into organisms' feeding rations to ameliorate the health status of the host's intestine, enhancing its functionality and physiological performance, and to confront increasing antimicrobial resistance. The first step in this direction is the understanding of the complex microbiome system of the organism in order to administer the optimal supplement, in the best concentration, and in the correct way. In the present review, pre-, pro-, and synbiotics as aquaculture additives, together with the factors affecting gut microbiome in crayfish, are discussed, combined with their future prospective outcomes. Probiotics constitute non-pathogenic bacteria, mainly focused on organisms' energy production and efficient immune response; prebiotics constitute fiber indigestible by the host organism, which promote the preferred gastrointestinal tract microorganisms' growth and activity towards the optimum balance between the gastrointestinal and immune system's microbiota; whereas synbiotics constitute their combination as a blend. Among pro-, pre-, and synbiotics' multiple benefits are boosted immunity, increased resistance towards pathogens, and overall welfare promotion. Furthermore, we reviewed the intestinal microbiota abundance and composition, which are found to be influenced by a plethora of factors, including the organism's developmental stage, infection by pathogens, diet, environmental conditions, culture methods, and exposure to toxins. Intestinal microbial communities in crayfish exhibit high plasticity, with infections leading to reduced diversity and abundance. The addition of synbiotic supplementation seems to provide better results than probiotics and prebiotics separately; however, there are still conflicting results regarding the optimal concentration.
Collapse
Affiliation(s)
- Maria V Alvanou
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Staikou
- Laboratory of Marine and Terrestrial Animal Diversity, Department of Zoology, Facultyof Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki,Greece
| | - Apostolos P Apostolidis
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece
- Laboratory of Ichthyology & Fisheries, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|