1
|
Zhang HC, Yang XQ, Wang CH, Shang CY, Shi CY, Chen GW, Liu DZ. Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107310. [PMID: 40058299 DOI: 10.1016/j.aquatox.2025.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
It is impossible to overlook the effects of microplastics (MPs) on aquatic organisms as they continuously accumulate in water environment. Freshwater planarians, which exist in the benthic zone of water bodies and come into contact with the deposited MPs particles, provide a highly representative model for studying the effects of MPs on aquatic organisms. Anthocyanins (ANTs) have gained significant popularity in recent years for their diverse health benefits. In the current study, the median lethal concentration (LC50) of polystyrene (PS) to planarian Dugesia japonica was determined for the first time. Based on this, multiple toxic effects of single PS and PS in combination with ANTs on planarians were explored. The results showed that PS exposure disrupted the redox homeostasis and induced oxidative damage in planarians. Also, PS stress affected the neuromorphology, aggravated cell apoptosis in planarians probably by altering neural gene expressions as well as promoting the expression of apoptosis-related genes while inhibiting stem cell marker genes. In addition, the results also suggested that co-exposure of ANTs could effectively alleviate the toxicity of PS on planarians. Particularly, long-term environmentally relevant concentration PS exposure exhibited a higher propensity for inducing toxicity on planarians than short-term high concentration acute exposure, indicating that the harm of environmental MPs to humans and wildlife exposed to them should not be underestimated. Therefore, considering the recently rising and rapid development of ecotoxicomics, more in-depth research on the toxicity mechanism of environmentally relevant concentration PS-MPs to freshwater planarians from multi-omics levels will be our future work.
Collapse
Affiliation(s)
- He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Cai-Hui Wang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Yang Shang
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshedong Road, Xinxiang 453007, China
| |
Collapse
|
2
|
Li Y, Ling W, Hou C, Yang J, Xing Y, Lu Q, Wu T, Gao Z. Global distribution characteristics and ecological risk assessment of microplastics in aquatic organisms based on meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137977. [PMID: 40120259 DOI: 10.1016/j.jhazmat.2025.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/07/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
As microplastic pollution in the natural environment intensifies, the risk of microplastic contamination faced by aquatic organisms has garnered increasing widespread attention. Most studies have primarily focused on the impacts of microplastics within specific regions and on particular species. However, with the global migration of microplastics, it is necessary to conduct comprehensive research on the distribution characteristics, ingestion mechanisms, and ecological impacts of microplastics across various aquatic organisms. To address this research gap, the present study systematically evaluates the distribution status of microplastics in global aquatic organisms and assesses their potential ecological risks. Firstly, a review of the sources and impacts of microplastics within aquatic organisms is provided. Secondly, a bibliometric analysis is employed to examine the current research landscape and trends, coupled with a quantitative analysis of how the biological characteristics of aquatic organisms influence microplastic ingestion and the distribution patterns of microplastics within these organisms. Thirdly, the study investigates the mechanisms by which microplastics affect aquatic food chains by examining their impact on organisms at different trophic levels. Finally, strategies to reduce microplastic input into water bodies and future research directions are proposed. The findings offer scientific foundations and decision-making support for global microplastic pollution control, aiming to protect the health and sustainable development of aquatic ecosystems.
Collapse
Affiliation(s)
- Yifei Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chang Hou
- Department of Cardiology, Peking University People's Hospital, Beijing 100044, China
| | - Jian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Qingbing Lu
- Sinochem Environment Holdings Co., Ltd, Beijing 100071, China
| | - Tianqi Wu
- Human Resources Department, Yangquan Power Supply Company of State Grid Shanxi Electric Power Company, Yangquan, Shanxi 045000, China
| | - Ziyuan Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Yadav B, Gupta P, Kumar V, Umesh M, Sharma D, Thomas J, Kumar Bhagat S. Potential health, environmental implication of microplastics: A review on its detection. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 268:104467. [PMID: 39608219 DOI: 10.1016/j.jconhyd.2024.104467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
Microplastic contamination of terrestrial and aquatic environment has gained immense research attention due to their potential ecotoxicity and biomagnification property when enterer into food chain. Heterogenous nature of microplastics coupled with their ability to combine with other emerging pollutants have increased the severity of this crisis. Existing detection methods often fails to accurately quantify the amount of microplastic components present in environmental and biological samples. Thus, a great deal of research gap always exists in our current understanding about microplastics including the limitations in screening, detection and mitigation. This review work presents a comprehensive out look on the impact of microplastics on both terrestrial and aquatic environment. Furthermore, an in-depth discussion on various microplastic detection techniques recently used for microplastic quantification along with their significance and limitations is summarised in this review. The review also elaborates various physical, chemical and biological methods used for the mitigation of microplastics from environmental samples.
Collapse
Affiliation(s)
- Bhawana Yadav
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248001, Uttarakhand, India.
| | - Vinay Kumar
- Biomaterials and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Mridul Umesh
- Department of Life Sciences, Christ University, Bangalore 560029, Karnataka, India
| | - Deepak Sharma
- Department of Biotechnology, Chandigarh College of Technology, Chandigarh Group of Colleges Landran, 140307, Mohali, Punjab, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Suraj Kumar Bhagat
- Marwadi University Research Center, Department of Civil Engineering, Faculty of Engineering & Technology, Marwadi University, Gujarat, Rajkot, 360003, India
| |
Collapse
|
4
|
Wang X, Zhou S, Huang Y, Chu P, Zhu L, Chen X. Nanoplastics and bisphenol A exposure alone or in combination induce hepatopancreatic damage and disturbances in carbohydrate metabolism in the Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107145. [PMID: 39546969 DOI: 10.1016/j.aquatox.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Bisphenol A (BPA) is a widely found endocrine-disrupting chemical (EDC). Nanoplastics (NPs) represent a novel environmental pollutant, and the combined toxicity of these pollutants on the hepatopancreas of marine arthropods is understudied. To investigate the potential risks associated with co-exposure to BPA and NPs on the hepatopancreas, Portunus trituberculatus was treated with 100 μg/L BPA, 104 particles/L NPs, and a combination of 100 μg/L BPA + 104 particles/L NPs for 21 days, respectively. Histological observation demonstrated that co-exposure severely damaged both hepatopancreas tissue and mitochondrial structure. Transcriptome analysis revealed that 1498 transcripts were differentially expressed under different exposure conditions, and these transcripts are involved in biological processes such as cellular processes and carbohydrate metabolism. BPA and NPs co-exposure modulate pyruvic acid (PA) levels by increasing the activity of pyruvate kinase (PK), leading to changes in glycogen and glucose (GLU) content within tissues, thus affecting glycolysis. The dysregulation of the CHI3L1, ACSS2 and ACYP2 genes induced by BPA and NPs co-exposure may collectively regulate the process of carbohydrate metabolism. Notably, the downregulation of the VPS4 gene and the upregulation of the GBA1, Pin1 and CCND2 gene may affect the cell cycle, potentially impacting cell proliferation after BPA and NPs co-exposure. These data indicate that co-exposure to BPA and NPs is more significantly cytotoxic and leads to changes in carbohydrate metabolism, cell proliferation, and histological damage in the hepatopancreas of P. trituberculatus. This knowledge emphasizes the need for proactive measures to mitigate the adverse effects of these environmental pollutants on human and ecological health while also providing valuable insights into the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
5
|
Zhou S, Wang X, Huang Y, Liu Y, Zheng Y, Chu P, Zhu L, Xu X. Bisphenol A induces lipid metabolism disorder and impairs hepatopancreas of Sesarmops sinensis. MARINE POLLUTION BULLETIN 2024; 208:117058. [PMID: 39357365 DOI: 10.1016/j.marpolbul.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol A (BPA) is a chemical that disrupts the endocrine system and may have negative implications on the lipid metabolism of organisms. To ascertain BPA implications on lipid metabolism in the hepatopancreas of Sesarmops sinensis, we exposed S. sinensis to different concentrations of BPA for 14 days. The outcomes manifested that BPA may stimulate hepatopancreas injury and lipid deposition in the hepatopancreas of S. sinensis and lead to the increase of hepatosomatic index (HSI). Transcriptome analysis showed that lipid metabolism-related pathways were significantly enriched in KEGG pathways. BPA exposure also caused disorders in lipid metabolism by altering fatty acid composition and lipid metabolites. The up-regulation of lipid synthesis genes and the alteration of lipid transport genes may be important reasons for the disorder of lipid metabolism. Furthermore, these outcomes provide a fresh point of reference for comprehending the ecotoxicological impacts of BPA on aquatic organisms.
Collapse
Affiliation(s)
- Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Xinghong Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
6
|
Chen X, Zhou S, Liu Y, Feng Z, Mu C, Zhang T. The combined effects of microplastics and bisphenol-A on the innate immune system response and intestinal microflora of the swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106855. [PMID: 38335878 DOI: 10.1016/j.aquatox.2024.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Microplastics (MPs) and bisphenol-A (BPA) have been shown to have toxic effects on aquatic organisms. However, data on the combined effects of MPs and BPA on the innate immune system response and intestinal microorganisms of crabs are limited. Here, Portunus trituberculatus were exposed to BPA (at a concentration of 100 μg/L), MPs (microbeads of polystyrene with a particle size of 1 µm and at a concentration of 1 × 106 particles/L) or BPA+MPs for 21 days were tested at the tissue, cellular, and molecular levels. The results showed that neither the single nor combined exposure of MPs and BPA had a significant impact on the growth of crabs. However, intestinal histology study found that the intestinal villi of crabs in the BPA treated group, MP treated group and MP+BPA treated group appeared abnormal. Overall, compared with the control group and the single pollutant exposure group, co-exposure to the MP and BPA generally led to a significant increase in MDA and SOD activity and a significant decrease in CAT activity, and the activation of MyD88, Crustin-1, TARF6, Cu/Zn-SOD, Lyz, Toll-2 and NOX gene expression levels were significantly up-regulated. Co-exposure induced disorders of the intestinal microbial community of crabs, resulting in an increase in the abundance of harmful bacteria and a decrease in the abundance of beneficial bacteria. This study shows that the combined exposure of MPs and BPA can exacerbate the intestinal toxicity of a single pollutant to P. trituberculatus.
Collapse
Affiliation(s)
- Xiaocong Chen
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shangjie Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai 264003, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Changkao Mu
- Key Laboratory of Applied Aquacultral Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|