1
|
Khan MU, Zahid T, Sabar MF, Masood T, Ali Q, Han S, Ahmad A. Ethnogenetic analysis reveals the Bronze Age genetic affiliation of Yashkuns with West Eurasians. Sci Rep 2024; 14:31414. [PMID: 39733090 PMCID: PMC11682329 DOI: 10.1038/s41598-024-83136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
Focusing on the Yashkun population of Gilgit-Baltistan, an administrative territory in northern Pakistan, our study investigated mtDNA haplotypes as indicators of ancient gene flow and genetic diversity. Genomic DNA was extracted and evaluated for quality using agarose gel electrophoresis. The complete control region of mtDNA (nt 16024-576) was amplified via PCR, and sequencing was performed using the Big Dye Terminator Kit on an Applied Biosystems Genetic Analyzer. Sequence alignment and analysis were conducted using Geneious software and the Cambridge Reference Sequence (CRS). Haplotypes were classified into phylogenetic haplogroups with HaploGrep 2 and the Mito Tool platform, referencing PhyloTree version 17. The study identified considerable genetic diversity within the Yashkun population, with major macro-haplogroups H (29.47%), T (13.68%), and M (13.68%) representing West Eurasian, South Asian, and East & Southeast Asian lineages. The highest genetic affiliation was with West Eurasian haplogroups (73.68%), indicating significant gene flow from the West. The population's genetic distinctiveness was highlighted by the calculation of forensic genetic characteristics, such as power of discrimination (PD = 0.9975), genetic diversity (GD = 0.9865), and random match probability (RMP = 0.01349). The knowledge of the genetic makeup of the Yashkun population was further improved by the inference of phylogenetic links made possible by comparisons with other indigenous groups in Pakistan. These results attest to the reliability of mtDNA data for forensic applications such as ancestry tracking, individual identification, and additions to national forensic databases. The inclusion of mtDNA analysis in forensic science is strongly supported by this groundbreaking study on the Yashkun community, especially in areas like Pakistan with diverse genetic histories.
Collapse
Affiliation(s)
- Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Tazeen Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Farooq Sabar
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan.
| | - Tayyaba Masood
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Feng Y, Chen L, Wang X, Zhang H, Wang Q, Liu Y, Jin X, Yang M, Huang J, Ren Z. Analysis of maternal genetic structure of mitochondrial DNA control region from Tai-Kadai-speaking Buyei population in southwestern China. BMC Genomics 2024; 25:50. [PMID: 38212691 PMCID: PMC10782584 DOI: 10.1186/s12864-023-09941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Even though the Buyei are a recognised ethnic group in southwestern China, there hasn't been much work done on forensic population genetics, notably using mitochondrial DNA. The sequences and haplogroups of mitochondrial DNA control regions of the Buyei peoples were studied to provide support for the establishment of a reference database for forensic DNA analysis in East Asia. METHODS AND RESULTS The mitochondrial DNA control region sequences of 200 Buyei individuals in Guizhou were investigated. The haplotype frequencies and haplogroup distribution of the Buyei nationality in Guizhou were calculated. At the same time, the paired Fst values of the study population and other populations around the world were computed, to explore their genetic polymorphism and population relationship. A total of 179 haplotypes were detected in the Buyei population, with frequencies of 0.005-0.015. All haplotypes were assigned to 89 different haplogroups. The haplotype diversity and random matching probability were 0.999283 and 0.0063, respectively. The paired Fst genetic distances and correlation p-values among the 54 populations revealed that the Guizhou Buyei was most closely related to the Henan Han and the Guizhou Miao, and closer to the Hazara population in Pakistan and the Chiang Mai population. CONCLUSIONS The study of mitochondrial DNA based on the maternal genetic structure of the Buyei nationality in Guizhou will benefit the establishment of an East Asian forensic DNA reference database and provide a reference for anthropological research in the future.
Collapse
Grants
- KY No. [2021]065 Guizhou Province Education Department, Characteristic Region Project, Qian Education
- [2020] 4Y057 Guizhou Scientific Support Project, Qian Science Support
- No. 82160324 National Natural Science Foundation of China
- No. 82160324 National Natural Science Foundation of China
- [2020]6012 Guizhou "Hundred" High-level Innovative Talent Project, Qian Science Platform Talents
- KF202009 Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Open Project
- NO. [2016] 1345 Guizhou Engineering Technology Research Center Project, Qian High-Tech of Development and Reform Commission, NO. [2016] 1345
- [2020] 1Y353 Guizhou Science Project, Qian Science Foundation
- [2018] 5779-X Guizhou Scientific Cultivation Project, Qian Science Platform Talent
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
3
|
Ren Z, Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Le C, Wang J, Huang J. Genetic analysis of the mitochondrial DNA control region in Tai-Kadai-speaking Dong population in southwest China. Ann Hum Biol 2022; 49:354-360. [PMID: 36190920 DOI: 10.1080/03014460.2022.2131334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Dong people in Southwest China are officially recognised as an ethnic group, but there has been a lack of population genetic research on this group, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Dong population, and to provide help for the construction of a forensic mitochondrial DNA analysis reference database in East Asia. SUBJECTS AND METHODS The sequences of the mitochondrial DNA control region were analysed in 200 individuals of Dong in Guizhou. The haplotype frequencies, haplogroup distribution and paired Fst values of Guizhou Dong and 51 other populations in the world were calculated and explained to explore the genetic polymorphism and population relationships. RESULTS A total of 180 haplotypes were detected, with frequencies of 0.005-0.02. All haplotypes were assigned to 97 different haplogroups. The haplotype diversity and random matching probability were 0.998643 and 0.00635, respectively. The paired Fst values and correlation p values of 52 populations showed that the Guizhou Dong had the closest genetic relationship with the Henan Han and the Guizhou Miao in China, and were closest to the Punjab population in Pakistan and the Kashmiri population when compared with the world populations. CONCLUSIONS Our study was based on the matrilineal genetic structure of Guizhou Dong to study mitochondrial DNA, which was helpful to promote the establishment of the forensic DNA reference database in East Asia and provide reference for anthropological research.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jie Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, P. R. China
| |
Collapse
|
4
|
Ikram MS, Mehmood T, Rakha A, Akhtar S, Khan MIM, Al-Qahtani WS, Safhi FA, Hadi S, Wang CC, Adnan A. Genetic diversity and forensic application of Y-filer STRs in four major ethnic groups of Pakistan. BMC Genomics 2022; 23:788. [PMID: 36451116 PMCID: PMC9714238 DOI: 10.1186/s12864-022-09028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
17 Y-chromosomal STRs which are part of the Yfiler Amplification Kit were investigated in 493 unrelated Pakistani individuals belonging to the Punjabi, Sindhi, Baloch, and Pathan ethnic groups. We have assessed the forensic parameters and population genetic structure for each group. Among the 493 unrelated individuals from four ethnic groups (128 Baloch, 122 Pathan, 108 Punjabi, and 135 Sindhi), 82 haplotypes were observed with haplotype diversity (HD) of 0.9906 in Baloch, 102 haplotypes with HD value of 0.9957 in Pathans, 80 haplotypes with HD value of 0.9924 in Punjabi, and 105 haplotypes with HD value of 0.9945 in the Sindhi population. The overall gene diversity for Baloch, Pathan, Punjabi, and Sindhi populations was 0.6367, 0.6479, 0.6657, and 0.6112, respectively. The results had shown us that Pakistani populations do not have a unique set of genes but share the genetic affinity with regional (Central Asia and Northern India) populations. The observed low gene diversity (heterozygosity) values may be because of endogamy trends and this observation is equally supported by the results of forensic parameters which are mostly static across 4 combinations (minimal STRs, extended 11 Y-STRs, Powerplex 12 Y System, and Yfiler 17 Y-STRs) of STRs in these four populations.
Collapse
Affiliation(s)
- Muhammad Salman Ikram
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China ,grid.412782.a0000 0004 0609 4693Institute of Chemistry, University of Sargodha, Sargodha, 40100 Punjab Pakistan
| | - Tahir Mehmood
- grid.412782.a0000 0004 0609 4693Institute of Chemistry, University of Sargodha, Sargodha, 40100 Punjab Pakistan ,grid.11173.350000 0001 0670 519XCentre for Applied and Molecular Biology (CAMB), University of the Punjab, Lahore, 53700 Punjab Pakistan
| | - Allah Rakha
- grid.412956.d0000 0004 0609 0537Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
| | - Sareen Akhtar
- grid.412956.d0000 0004 0609 0537Department of Forensic Sciences, University of Health Sciences, Lahore, 54600 Pakistan
| | | | - Wedad Saeed Al-Qahtani
- grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| | - Fatmah Ahmed Safhi
- grid.449346.80000 0004 0501 7602Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671 Saudi Arabia
| | - Sibte Hadi
- grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| | - Chuan-Chao Wang
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Atif Adnan
- grid.12955.3a0000 0001 2264 7233Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China ,grid.472319.a0000 0001 0708 9739Department of Forensic Sciences, College of Criminal Justice, Naïf Arab University of Security Sciences, Riyadh, 11452 Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Feng Y, Zhang H, Wang Q, Jin X, Le C, Liu Y, Wang X, Jiang H, Ren Z. Whole mitochondrial genome analysis of Tai-Kadai-speaking populations in Southwest China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a single matrilineal gene, human mitochondrial DNA plays a very important role in the study of population genetics. The whole mitogenome sequences of 287 individuals of the Tai-Kadai-speaking population in Guizhou were obtained. It was discovered that there were 82, 104, and 94 haplotypes in 83 Bouyei individuals, 107 Dong individuals, and 97 Sui individuals, respectively; and the haplotype diversity in Bouyei, Dong, and Sui groups was 1.000 ± 0.02, 0.9993 ± 0.0015, and 0.999 ± 0.002, respectively. The result of neutrality tests of the Tai-Kadai-speaking population in Guizhou showed significant negative values, and the analysis of mismatch distribution showed an obvious unimodal distribution. The results implied that Guizhou Tai-Kadai-speaking populations had high genetic diversities and may have experienced recent population expansion. In addition, the primary haplogroups of studied populations were M*, F, B, D, and R*, implying that they may origin from Southern China. The matrilineal genetic structure of the Tai-Kadai-speaking populations in Guizhou was analyzed by merging the mitogenome data of 79 worldwide populations as reference data. The results showed that there were close relationships between studied populations and other Tai-Kadai as well as some Austronesian populations in East and Southeast Asia. Overall, the mitogenome data generated in this study will provide important data for the study of genetic structure of Tai-Kadai speaking populations.
Collapse
|
6
|
Mitochondrial Haplogroup Classification of Ancient DNA Samples Using Haplotracker. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5344418. [PMID: 35342764 PMCID: PMC8956381 DOI: 10.1155/2022/5344418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Mitochondrial DNA haplogroup classification is used to study maternal lineage of ancient human populations. The haplogrouping of ancient DNA is not easy because the DNA is usually found in small pieces in limited quantities. We have developed Haplotracker, a straightforward and efficient high-resolution haplogroup classification tool optimized specifically for ancient DNA samples. Haplotracker offers a user-friendly input interface for multiple mitochondrial DNA sequence fragments in a sample. It provides accurate haplogroup classification with full-length mitochondrial genome sequences and provides high-resolution haplogroup predictions for some fragmented control region sequences using a novel algorithm built on Phylotree mtDNA Build 17 (Phylotree) and our haplotype database (n = 118,869). Its performance for accuracy was demonstrated to be high through haplogroup classification using 8,216 Phylotree full-length and control region mitochondrial DNA sequences compared with HaploGrep 2, one of the most accurate current haplogroup classifiers. Haplotracker provides a novel haplogroup tracking solution for fragmented sequences to track subhaplogroups or verify the haplogroups efficiently. Using Haplotracker, we classified mitochondrial haplogroups to the final subhaplogroup level in nine ancient DNA samples extracted from human skeletal remains found in 2,000-year-old elite Xiongnu cemetery in Northeast Mongolia. Haplotracker can be freely accessed at https://haplotracker.cau.ac.kr.
Collapse
|
7
|
Feng Y, Zhang H, Wang Q, Yang M, Liu Y, Wang Jie, Huang J, Ren Z. The mitochondrial DNA control region sequences from the Chinese Sui population of southwestern China. Ann Hum Biol 2021; 48:635-640. [PMID: 34663140 DOI: 10.1080/03014460.2021.1994649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sui people are officially recognised people living in southwest China, but there has been a lack of genetic research, especially based on mitochondrial DNA data. AIM To study the sequences and haplogroups of the mitochondrial DNA control region in a typical Sui population, with the aim of helping to promote the establishment of a forensic DNA analysis reference database in East Asia. SUBJECTS AND METHODS We analysed 201 Sui individuals and observed the sequences of the mitochondrial DNA control region. We calculated and explained the haplotype frequencies, haplogroup distribution and pairwise Fst values between the Sui and 47 other populations in the world, in order to explore genetic polymorphisms and population relationships. RESULTS 161 haplotypes were found in the Sui population, with frequencies of 0.0049-0.0199. All samples were assigned to 80 different haplogroups. The haplotype diversity and random matching probability were 0.999938 and 0.024729, respectively. The pairwise Fst values and correlation p-values of 48 populations showed that the Sui population was most closely related to the Miao population in Guizhou and the Han population in Henan, and closer to the Punjab population and Pukhtunkhwa population in Pakistan, and was significantly different from the other 43 groups. Compared with the other 43 groups, it is relatively isolated. CONCLUSION Our results show that the study of mitochondrial DNA based on the analysis of matrilineal genetic structure of the Sui population can help to promote the establishment of a forensic DNA reference database in East Asia and provide reference for future anthropological research.
Collapse
Affiliation(s)
- Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wang Jie
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
8
|
Singh G, Yellapu S, Sandhu HS, Sharma I, Sharma V, Bhanwer AJS. Genetic characterisation of the North-West Indian populations: analysis of mitochondrial DNA control region variations. Ann Hum Biol 2021; 48:166-172. [PMID: 33494619 DOI: 10.1080/03014460.2021.1879933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Human mitochondrial DNA presents several interesting characteristics, making it a favourable tool in the field of molecular anthropology, medical genetics, population history, and forensic science. AIM The present study investigated the mitochondrial DNA (mtDNA) control region variations in diverse ethnic groups of North-West India for which population data is insufficient. SUBJECTS AND METHODS The complete mtDNA control regions of 197 unrelated (for up to three generations) healthy individuals belonging to different ethnic groups of North-West India were sequenced. The haplotype frequencies, haplogroup distribution, and pairwise FST values between the studied and other worldwide populations were generated to study patterns of variation in human mtDNA. RESULTS The results ascertained high gene diversity (0.998) in the studied maternal lineages, identifying 166 distinct haplotypes, of which 158 were unique and characterised by 117 variable sites. Three haplogroups: M3, M30, and U7 were observed to be the most prevalent, and phylogeographically a total of 55.86% of sequences were characterised into South Asian, followed by West Eurasian (40.18%) and East Asian (3.96%), ancestry haplogroups. Pairwise genetic differentiation comparisons revealed maternal homogeneity in the studied groups. No population substructure was detected within the North-West Indian populations. CONCLUSION The results of this preliminary study will contribute to an existing database of mtDNA variations of the Indian population and facilitate prospective studies investigating population genetics and human diseases.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India.,Department of Anthropology, Panjab University, Chandigarh, India
| | | | | | - Indu Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Varun Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
9
|
Wang M, Wang Z, He G, Wang S, Zou X, Liu J, Wang F, Ye Z, Hou Y. Whole mitochondrial genome analysis of highland Tibetan ethnicity using massively parallel sequencing. Forensic Sci Int Genet 2019; 44:102197. [PMID: 31756629 DOI: 10.1016/j.fsigen.2019.102197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023]
Abstract
Mitochondrial DNA (mtDNA) is a key player in numerous multifaceted and intricate biological processes and plays a pivotal role in dissecting the peopling of different populations, due to its maternally inherited property and comparatively high mutation rate. In this study, 119 Tibetan individuals from the Muli Tibetan Autonomous County of China (average altitude above 3,000 m) were employed in mitochondrial genome (mitogenome) sequencing by massively parallel sequencing (MPS) techniques using the Precision ID mtDNA Whole Genome Panel on an Ion S5XL system. The dataset presented 88 distinct haplotypes, resulting in the haplotype diversity of 0.9909. The majority of haplotypes were assigned to East Asian lineages and the distribution of haplogroups of Muli Tibetan significantly differed from reference Tibetan populations. The maximum parsimony phylogeny reconstructed by 119 newly generated mitogenomes revealed 12 major Muli Tibetan lineages. Intriguingly, a Sherpa-specific sub-haplogroup A15c1 with the lack of mutations at 4216 and 15,924 was discerned in our dataset, which suggested that the maternal gene pool of Sherpas may derive from Tibetan populations. The shared haplogroups between Muli Tibetan and lowland Han Chinese hinted that these lineages may derive from non-Tibetans and have already differentiated before their arrival on the Tibetan Plateau. Furthermore, extensive pairwise population comparisons displayed that Muli Tibetan had a closer genetic relationship with ethnically or linguistically close Nyingtri Tibetan, Nyingtri Lhoba and Chamdo Tibetan populations. Genetic affinity was also observed between the Muli Tibetan and North Han Chinese. Collectively, the results generated in this study enriched the existing forensic mtDNA database and raised additional interest in the application of whole mitogenome sequencing in forensic investigations.
Collapse
Affiliation(s)
- Mengge Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Guanglin He
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shouyu Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xing Zou
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Fei Wang
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|