1
|
Woerner AE, Crysup B, Hewitt FC, Gardner MW, Freitas MA, Budowle B. Techniques for estimating genetically variable peptides and semi-continuous likelihoods from massively parallel sequencing data. Forensic Sci Int Genet 2022; 59:102719. [DOI: 10.1016/j.fsigen.2022.102719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
|
2
|
Baniasad M, Reed AJ, Lai SM, Zhang L, Schulte KQ, Smith AR, LeSassier DS, Weber KL, Hewitt FC, Woerner AE, Gardner MW, Wysocki VH, Freitas MA. Optimization of proteomics sample preparation for forensic analysis of skin samples. J Proteomics 2021; 249:104360. [PMID: 34481086 DOI: 10.1016/j.jprot.2021.104360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/28/2021] [Accepted: 08/22/2021] [Indexed: 01/11/2023]
Abstract
We present an efficient protein extraction and in-solution enzymatic digestion protocol optimized for mass spectrometry-based proteomics studies of human skin samples. Human skin cells are a proteinaceous matrix that can enable forensic identification of individuals. We performed a systematic optimization of proteomic sample preparation for a protein-based human forensic identification application. Digestion parameters, including incubation duration, temperature, and the type and concentration of surfactant, were systematically varied to maximize digestion completeness. Through replicate digestions, parameter optimization was performed to maximize repeatability and increase the number of identified peptides and proteins. Final digestion conditions were selected based on the parameters that yielded the greatest percent of peptides with zero missed tryptic cleavages, which benefit the analysis of genetically variable peptides (GVPs). We evaluated the final digestion conditions for identification of GVPs by applying MS-based proteomics on a mixed-donor sample. The results were searched against a human proteome database appended with a database of GVPs constructed from known non-synonymous single nucleotide polymorphisms (SNPs) that occur at known population frequencies. The aim of this study was to demonstrate the potential of our proteomics sample preparation for future implementation of GVP analysis by forensic laboratories to facilitate human identification. SIGNIFICANCE: Genetically variable peptides (GVPs) can provide forensic evidence that is complementary to traditional DNA profiling and be potentially used for human identification. An efficient protein extraction and reproducible digestion method of skin proteins is a key contributor for downstream analysis of GVPs and further development of this technology in forensic application. In this study, we optimized the enzymatic digestion conditions, such as incubation time and temperature, for skin samples. Our study is among the first attempts towards optimization of proteomics sample preparation for protein-based skin identification in forensic applications such as touch samples. Our digestion method employs RapiGest (an acid-labile surfactant), trypsin enzymatic digestion, and an incubation time of 16 h at 37 °C.
Collapse
Affiliation(s)
- Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Andrew J Reed
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | - August E Woerner
- Center for Human Identification, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Michael A Freitas
- Mass Spectrometry and Proteomics Facility, Campus Chemistry Instrument Center, The Ohio State University, Columbus, OH, USA; The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Forensic proteomics. Forensic Sci Int Genet 2021; 54:102529. [PMID: 34139528 DOI: 10.1016/j.fsigen.2021.102529] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
Protein is a major component of all biological evidence, often the matrix that embeds other biomolecules such as polynucleotides, lipids, carbohydrates, and small molecules. The proteins in a sample reflect the transcriptional and translational program of the originating cell types. Because of this, proteins can be used to identify body fluids and tissues, as well as convey genetic information in the form of single amino acid polymorphisms, the result of non-synonymous SNPs. This review explores the application and potential of forensic proteomics. The historical role that protein analysis played in the development of forensic science is examined. This review details how innovations in proteomic mass spectrometry have addressed many of the historical limitations of forensic protein science, and how the application of forensic proteomics differs from proteomics in the life sciences. Two more developed applications of forensic proteomics are examined in detail: body fluid and tissue identification, and proteomic genotyping. The review then highlights developing areas of proteomics that have the potential to impact forensic science in the near future: fingermark analysis, species identification, peptide toxicology, proteomic sex estimation, and estimation of post-mortem intervals. Finally, the review highlights some of the newer innovations in proteomics that may drive further development of the field. In addition to potential impact, this review also attempts to evaluate the stage of each application in the development, validation and implementation process. This review is targeted at investigators who are interested in learning about proteomics in a forensic context and expanding the amount of information they can extract from biological evidence.
Collapse
|