1
|
Ghemrawi M, Ramírez Torres A, Netherland M, Wang Y, Hasan NA, El-Fahmawi B, Duncan G, McCord B. Forensic insights from shotgun metagenomics: Tracing microbial exchange during sexual intercourse. Forensic Sci Int Genet 2025; 78:103266. [PMID: 40117915 DOI: 10.1016/j.fsigen.2025.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
The microbiome is becoming an emerging field of interest within forensic science with high potential for individualization; however, little is known about bacterial species specific to the genital area or their ability to transfer between individuals during sexual contact. In this proof-of-concept study, we investigated microbial transfer dynamics in seven monogamous, heterosexual couples by collecting pre- and post-sexual intercourse samples from their genital areas, including penile, vaginal, and labial locations. Utilizing Shotgun Metagenomic Sequencing, we sequenced the microbial profiles of these samples. Our findings reveal significant transfer from the vaginal microbiome onto the penile microbiome, predominantly originating from the labial genitalia. Moreover, strain analysis unveiled distinct differentiation between the same species of bacteria across individuals, underscoring the potential for microbial forensics to distinguish individuals. This study contributes to our understanding of microbial transfer during sexual contact and highlights the forensic implications of the genital microbiome.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- The Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, PA 19044, USA; Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | - Andrea Ramírez Torres
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA
| | | | - Ying Wang
- MAWI DNA Technologies, CA 94566, USA
| | | | | | | | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, FL 33199, USA.
| |
Collapse
|
2
|
Tripathi P, Render R, Nidhi S, Tripathi V. Microbial genomics: a potential toolkit for forensic investigations. Forensic Sci Med Pathol 2025; 21:417-429. [PMID: 38878110 DOI: 10.1007/s12024-024-00830-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 03/29/2025]
Abstract
Microbial forensics is a new discipline of science that analyzes evidence related to biological crime through the uniqueness and abundance of microorganisms and their toxins. Microorganisms remain alive longer than any other trace of biological evidence, such as DNA, fingerprints, and fibers, because of the protective cell membrane or capsules. Microbiological research has opened up various possibilities for forensic investigations of microbial flora. Current molecular technologies, including DNA sequencing, whole-genome sequencing, metagenomics, DNA fingerprinting, and molecular phylogeny, provide valid results for forensic investigations. Recent advancements in genome sequencing technologies, genetic data generation, and bioinformatic tools have significantly improved microbial sampling methods and forensic analyses. In this review, we discuss the applications of microbial genomic tools and technologies in forensic investigations, including human identification, geolocation, and causes of death.
Collapse
Affiliation(s)
- Pooja Tripathi
- Department of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Riya Render
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Sweta Nidhi
- Department of Forensic Sciences, National Forensic Sciences University, Ponda, Goa, 430401, India
| | - Vijay Tripathi
- Department of Microbiology, Graphic Era Deemed to be University, Clement Town, Dehradun, 248002, India.
| |
Collapse
|
3
|
Ricchezze G, Buratti E, De Micco F, Cingolani M, Scendoni R. Medico-Legal Applications of the Human Microbiome and Critical Issues Due to Environmental Transfer: A Review. Microorganisms 2024; 12:2424. [PMID: 39770627 PMCID: PMC11677503 DOI: 10.3390/microorganisms12122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Microbiome has recently seen an increase in its forensic applications. It could be employed to identify a suspect when DNA is not available; it can be used to establish postmortem interval (PMI). Furthermore, it could prove to be fundamental in cases of sexual assault. One of the most interesting aspects to study is how microbiomes are transferred. The aim of this review is to analyze the existing literature focusing on the potential transfer of microbiome from humans to environment. Searches on PubMed, Scopus, and Web of Science identified a total of 348 articles. Furthermore, from the bibliographies of the included articles, an additional publication was selected, in accordance with the established inclusion and exclusion criteria. This study has shown the potential of utilizing microbiomes as trace evidence, particularly in connecting individuals to specific environments or objects. However, the variability and dynamics of microbial transfer and persistence need to be carefully addressed.
Collapse
Affiliation(s)
- Giulia Ricchezze
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Erika Buratti
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Francesco De Micco
- Research Unit of Bioethics and Humanities, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Roma, Italy;
| | - Mariano Cingolani
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| | - Roberto Scendoni
- Department of Law, Institute of Legal Medicine, University of Macerata, 62100 Macerata, Italy; (E.B.); (M.C.); (R.S.)
| |
Collapse
|
4
|
Franceschetti L, Lodetti G, Blandino A, Amadasi A, Bugelli V. Exploring the role of the human microbiome in forensic identification: opportunities and challenges. Int J Legal Med 2024; 138:1891-1905. [PMID: 38594499 PMCID: PMC11306296 DOI: 10.1007/s00414-024-03217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Forensic microbiology is rapidly emerging as a novel tool for human identification. The human microbiome, comprising diverse microbial communities including fungi, bacteria, protozoa, and viruses, is unique to each individual, offering a new dimension to forensic investigations. While traditional identification methods primarily rely on DNA profiling and fingerprint analysis, they face limitations when complete DNA or fingerprints profiles are unattainable or degraded. In this context, the microbial signatures of the human skin microbiome present a promising alternative due to their resilience to environmental stresses and individual-specific composition. This review explores the potential of microbiome analysis in forensic human identification, evaluating its applications, advantages, limitations, and future prospects. The uniqueness of an individual's microbial community, particularly the skin microbiota, can provide distinctive biological markers for identification purposes, while technological advancements like 16 S rRNA sequencing and metagenomic shotgun sequencing are enhancing the specificity of microbial identification, enabling detailed analysis of these complex ecological communities. Despite these promising findings, current research has not yet achieved a level of identification probability that could establish microbial analysis as a stand-alone evidence tool. Therefore, it is presently considered ancillary to traditional methods, contributing to a more comprehensive biological profile of individuals.
Collapse
Affiliation(s)
- Lorenzo Franceschetti
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 37, Milan, 20133, Italy.
| | - Giorgia Lodetti
- Institute of Legal Medicine, Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 37, Milan, 20133, Italy
| | | | - Alberto Amadasi
- Institute of Legal Medicine and Forensic Sciences, University Medical Centre Charité, University of Berlin, Turmstr. 21, Building N, Berlin, 10559, Germany
| | - Valentina Bugelli
- Department of Medicine and Surgery, Section of Forensic Medicine, University of Parma, Parma, Italy
| |
Collapse
|
5
|
Huang L, Huang H, Liang X, Su Q, Ye L, Zhai C, Huang E, Pang J, Zhong X, Shi M, Chen L. Skin locations inference and body fluid identification from skin microbial patterns for forensic applications. Forensic Sci Int 2024; 362:112152. [PMID: 39067177 DOI: 10.1016/j.forsciint.2024.112152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/15/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given that microbiological analysis can be an alternative method that overcomes the shortcomings of traditional forensic technology, and skin samples may be the most common source of cases, the analysis of skin microbiome was investigated in this study. High-throughput sequencing targeting the V3-V4 region of 16S rRNA gene was performed to reveal the skin microbiome of healthy individuals in Guangdong Han. The bacterial diversity of the palm, navel, groin and plantar of the same individual was analyzed. The overall classification based on 16S rRNA gene amplicons revealed that the microbial composition of skin samples from different anatomical parts was different, and the dominant bacterial genus of the navel, plantar, groin and palm skin were dominated by Cutibacterium, Staphylococcus, Corynebacterium and Staphylococcus, respectively. PCoA analysis showed that the skin at these four anatomical locations could only be grouped into three clusters. A predictive model based on random forest algorithm showed the potential to accurately distinguish these four anatomical locations, which indicated that specific bacteria with low abundance were the key taxa. In addition, the skin microbiome in this study is significantly different from the dominant microbiome in saliva and vaginal secretions identified in our previous study, and can be distinguished from these two tissue fluids. In conclusion, the present findings on the community and microbial structure details of the human skin may reveal its potential application value in assessing the location of skin samples and the type of body fluids in forensic medicine.
Collapse
Affiliation(s)
- Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hongyan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Su
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Linying Ye
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuangyan Zhai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Junjie Pang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - XingYu Zhong
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meisen Shi
- Criminal Justice College of China University of Political Science and Law, Beijing 100088, China.
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Gouello A, Henry L, Chadli D, Salipante F, Gibert J, Boutet-Dubois A, Lavigne JP. Evaluation of the Microbiome Identification of Forensically Relevant Biological Fluids: A Pilot Study. Diagnostics (Basel) 2024; 14:187. [PMID: 38248064 PMCID: PMC10814007 DOI: 10.3390/diagnostics14020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
In forensic sciences, body fluids, or biological traces, are a major source of information, and their identification can play a decisive role in criminal investigations. Currently, the nature of biological fluids is assessed using immunological, physico-chemical, mRNA and epigenetic methods, but these have limits in terms of sensitivity and specificity. The emergence of next-generation sequencing technologies offers new opportunities to identify the nature of body fluids by determining bacterial communities. The aim of this pilot study was to assess whether analysis of the bacterial communities in isolated and mixed biological fluids could reflect the situation observed in real forensics labs. Several samples commonly encountered in forensic sciences were tested from healthy volunteers: saliva, vaginal fluid, blood, semen and skin swabs. These samples were analyzed alone or in combination in a ratio of 1:1. Sequencing was performed on the Ion Gene StudioTM S5 automated sequencer. Fluids tested alone revealed a typical bacterial signature with specific bacterial orders, enabling formal identification of the fluid of interest, despite inter-individual variations. However, in biological fluid mixtures, the predominance of some bacterial microbiomes inhibited interpretation. Oral and vaginal microbiomes were clearly preponderant, and the relative abundance of their bacterial communities and/or the presence of common species between samples made it impossible to detect bacterial orders or genera from other fluids, although they were distinguishable from one another. However, using the beta diversity, salivary fluids were identified and could be distinguished from fluids in combination. While this method of fluid identification is promising, further analyses are required to consolidate the protocol and ensure reliability.
Collapse
Affiliation(s)
- Audrey Gouello
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| | - Laura Henry
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- Sciences Sorbonne Universtity, 75005 Paris, France
| | - Djamel Chadli
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
- Aix-Marseille University, 13005 Marseille, France
| | - Florian Salipante
- Service de Biostatistiques, Epidémiologie, Santé Publique et Innovation en Méthodologie, Université Montpellier, CHU Nîmes, 30029 Nîmes, France;
| | - Joséphine Gibert
- Institut de Recherche Criminelle de la Gendarmerie Nationale, 95000 Cergy-Pontoise, France; (A.G.); (L.H.); (D.C.); (J.G.)
| | - Adeline Boutet-Dubois
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30908 Nîmes, France;
| |
Collapse
|
8
|
Tambuzzi S, Maciocco F, Gentile G, Boracchi M, Bailo P, Marchesi M, Zoja R. Applications of microbiology to different forensic scenarios - A narrative review. J Forensic Leg Med 2023; 98:102560. [PMID: 37451142 DOI: 10.1016/j.jflm.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
In contrast to other forensic disciplines, forensic microbiology is still too often considered a "side activity" and is not able to make a real and concrete contribution to forensic investigations. Indeed, the various application aspects of this discipline still remain a niche activity and, as a result, microbiological investigations are often omitted or only approximated, in part due to poor report in the literature. However, in certain situations, forensic microbiology can prove to be extremely effective, if not crucial, when all other disciplines fail. Precisely because microorganisms can represent forensic evidence, in this narrative review all the major pathological forensic applications described in the literature have been presented. The goal of our review is to highlight the versatility and transversality of microbiology in forensic science and to provide a comprehensive source of literature to refer to when needed.
Collapse
Affiliation(s)
- Stefano Tambuzzi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | - Francesca Maciocco
- Azienda Ospedaliera "San Carlo Borromeo", Servizio di Immunoematologia e Medicina Trasfusionale (SIMT), Via Pio II°, n. 3, Milano, Italy
| | - Guendalina Gentile
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy.
| | - Michele Boracchi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | | | - Matteo Marchesi
- ASST Papa Giovanni XXIII, Piazza OMS 1, 24127, Bergamo, Italy
| | - Riccardo Zoja
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| |
Collapse
|
9
|
Ogbanga N, Nelson A, Ghignone S, Voyron S, Lovisolo F, Sguazzi G, Renò F, Migliario M, Gino S, Procopio N. The Oral Microbiome for Geographic Origin: An Italian Study. Forensic Sci Int Genet 2023; 64:102841. [PMID: 36774834 DOI: 10.1016/j.fsigen.2023.102841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human identification and geographical provenience. Several studies have focused on the use of microbiome for continental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of individuals living in two regions of Italy - Lombardy and Piedmont. Oral samples were obtained by swabbing the donors' oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an understanding of which anatomical region may provide more robust results that can be useful for forensic human identification. Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial families - Corynebacteriaceae and Actinomycetaceae - that showed abundance trends between the two regions. Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) and beta (Pr(>F)= 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identification purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a better discriminant for human identification than the oral one.
Collapse
Affiliation(s)
- Nengi Ogbanga
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Andrew Nelson
- Faculty of Health and Life Sciences - Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy
| | - Samuele Voyron
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 10125 Turin, Italy; Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; CRIMEDIM - Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino, 1-28100 Novara, Italy
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Noemi Procopio
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; School of Natural Sciences, University of Central Lancashire, PR1 2HE Preston, UK.
| |
Collapse
|
10
|
Carratto TMT, Moraes VMS, Recalde TSF, Oliveira MLGD, Teixeira Mendes-Junior C. Applications of massively parallel sequencing in forensic genetics. Genet Mol Biol 2022; 45:e20220077. [PMID: 36121926 PMCID: PMC9514793 DOI: 10.1590/1678-4685-gmb-2022-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Massively parallel sequencing, also referred to as next-generation sequencing, has positively changed DNA analysis, allowing further advances in genetics. Its capability of dealing with low quantity/damaged samples makes it an interesting instrument for forensics. The main advantage of MPS is the possibility of analyzing simultaneously thousands of genetic markers, generating high-resolution data. Its detailed sequence information allowed the discovery of variations in core forensic short tandem repeat loci, as well as the identification of previous unknown polymorphisms. Furthermore, different types of markers can be sequenced in a single run, enabling the emergence of DIP-STRs, SNP-STR haplotypes, and microhaplotypes, which can be very useful in mixture deconvolution cases. In addition, the multiplex analysis of different single nucleotide polymorphisms can provide valuable information about identity, biogeographic ancestry, paternity, or phenotype. DNA methylation patterns, mitochondrial DNA, mRNA, and microRNA profiling can also be analyzed for different purposes, such as age inference, maternal lineage analysis, body-fluid identification, and monozygotic twin discrimination. MPS technology also empowers the study of metagenomics, which analyzes genetic material from a microbial community to obtain information about individual identification, post-mortem interval estimation, geolocation inference, and substrate analysis. This review aims to discuss the main applications of MPS in forensic genetics.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | - Vitor Matheus Soares Moraes
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| | | | | | - Celso Teixeira Mendes-Junior
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Ribeirão Preto, SP, Brazil
| |
Collapse
|
11
|
Bajagai YS, Petranyi F, J Yu S, Lobo E, Batacan R, Kayal A, Horyanto D, Ren X, M Whitton M, Stanley D. Phytogenic supplement containing menthol, carvacrol and carvone ameliorates gut microbiota and production performance of commercial layers. Sci Rep 2022; 12:11033. [PMID: 35773309 PMCID: PMC9246849 DOI: 10.1038/s41598-022-14925-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Consumer push towards open and free-range production systems makes biosecurity on farms challenging, leading to increased disease and animal welfare issues. Phytogenic products are increasingly becoming a viable alternative for the use of antibiotics in livestock production. Here we present a study of the effects of commercial phytogenic supplement containing menthol, carvacrol and carvone on intestinal microbiota of layer hens, microbial functional capacity, and intestinal morphology. A total of 40,000 pullets were randomly assigned to two sides of the experimental shed. Growth performance, mortality, egg production and egg quality parameters were recorded throughout the trial period (18–30 weeks of age). Microbial community was investigated using 16S amplicon sequencing and functional difference using metagenomic sequencing. Phytogen supplemented birds had lower mortality and number of dirty eggs, and their microbial communities showed reduced richness. Although phytogen showed the ability to control the range of poultry pathogens, its action was not restricted to pathogenic taxa, and it involved functional remodelling the intestinal community towards increased cofactor production, heterolactic fermentation and salvage and recycling of metabolites. The phytogen did not alter the antimicrobial resistance profile or the number of antibiotic resistance genes. The study indicates that phytogenic supplementation can mimic the action of antibiotics in altering the gut microbiota and be used as their alternative in industry-scale layer production.
Collapse
Affiliation(s)
- Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Sung J Yu
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Romeo Batacan
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Advait Kayal
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Xipeng Ren
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, 4702, Australia.
| |
Collapse
|
12
|
The Urobiome and Its Role in Overactive Bladder. Int Neurourol J 2022; 26:190-200. [PMID: 35468617 PMCID: PMC9537439 DOI: 10.5213/inj.2244016.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Urine is no longer considered to be sterile. After the existence of the microbiome was revealed through metagenomic analysis using next-generation sequencing, the relationship between characteristics of the microbiome and diseases have been studied and published in various journals. A microbiome exists in the urinary tract and is associated with urinary tract infection, malignancy of the genitourinary tract, and lower urinary tract symptoms. Based on the urine sampling method, sampling site, culture method, and sex, the characteristics of the microbiome vary. Most of the Lactobacillus species are identified mainly in women, and various other species are identified in men. These microorganisms can cause or prevent various diseases. Variations in the microbiome are seen in those with and without disease, and an asymptomatic status does not indicate the absence of microbes. This microbiome has been implicated in a variety of lower urinary tract symptoms and diseases, in particular, overactive bladder. The microbiome differs between patients with urgency and urge urinary incontinence and healthy individuals. There are many aspects of the microbiome yet to be studied in relation to other lower urinary tract symptoms.
Collapse
|
13
|
Cho HW, Eom YB. Forensic Analysis of Human Microbiome in Skin and Body Fluids Based on Geographic Location. Front Cell Infect Microbiol 2021; 11:695191. [PMID: 34458160 PMCID: PMC8388931 DOI: 10.3389/fcimb.2021.695191] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
High-throughput DNA sequencing technologies have facilitated the in silico forensic analysis of human microbiome. Specific microbial species or communities obtained from the crime scene provide evidence of human contacts and their body fluids. The microbial community is influenced by geographic, ethnic, lifestyle, and environmental factors such as urbanization. An understanding of the effects of these external stressors on the human microbiome and determination of stable and changing elements are important in selecting appropriate targets for investigation. In this study, the Forensic Microbiome Database (FMD) (http://www.fmd.jcvi.org) containing the microbiome data of various locations in the human body in 35 countries was used. We focused on skin, saliva, vaginal fluid, and stool and found that the microbiome distribution differed according to the body part as well as the geographic location. In the case of skin samples, Staphylococcus species were higher than Corynebacterium species among Asians compared with Americans. Holdemanella and Fusobacterium were specific in the saliva of Koreans and Japanese populations. Lactobacillus was found in the vaginal fluids of individuals in all countries, whereas Serratia and Enterobacter were endemic to Bolivia and Congo, respectively. This study is the first attempt to collate and describe the observed variation in microbiomes from the forensic microbiome database. As additional microbiome databases are reported by studies worldwide, the diversity of the applications may exceed and expand beyond the initial identification of the host.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, South Korea
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, South Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, South Korea
| |
Collapse
|
14
|
Ahannach S, Spacova I, Decorte R, Jehaes E, Lebeer S. At the Interface of Life and Death: Post-mortem and Other Applications of Vaginal, Skin, and Salivary Microbiome Analysis in Forensics. Front Microbiol 2021; 12:694447. [PMID: 34394033 PMCID: PMC8355522 DOI: 10.3389/fmicb.2021.694447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial forensics represents a promising tool to strengthen traditional forensic investigative methods and fill related knowledge gaps. Large-scale microbiome studies indicate that microbial fingerprinting can assist forensics in areas such as trace evidence, source tracking, geolocation, and circumstances of death. Nevertheless, the majority of forensic microbiome studies focus on soil and internal organ samples, whereas the microbiome of skin, mouth, and especially vaginal samples that are routinely collected in sexual assault and femicide cases remain underexplored. This review discusses the current and emerging insights into vaginal, skin, and salivary microbiome-modulating factors during life (e.g., lifestyle and health status) and after death (e.g., environmental influences and post-mortem interval) based on next-generation sequencing. We specifically highlight the key aspects of female reproductive tract, skin, and mouth microbiome samples relevant in forensics. To fill the current knowledge gaps, future research should focus on the degree to which the post-mortem succession rate and profiles of vaginal, skin, and saliva microbiota are sensitive to abiotic and biotic factors, presence or absence of oxygen and other gases, and the nutrient richness of the environment. Application of this microbiome-related knowledge could provide valuable complementary data to strengthen forensic cases, for example, to shed light on the circumstances surrounding death with (post-mortem) microbial fingerprinting. Overall, this review synthesizes the present knowledge and aims to provide a framework to adequately comprehend the hurdles and potential application of vaginal, skin, and salivary post-mortem microbiomes in forensic investigations.
Collapse
Affiliation(s)
- Sarah Ahannach
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Irina Spacova
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| | - Ronny Decorte
- Laboratory of Forensic Genetics, Department of Forensic Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Imaging and Pathology, Forensic Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Els Jehaes
- Forensic DNA Laboratory, Department of Forensic Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|