1
|
Zheng Y, Liu G, Wu Q, Tan M, Xue J, Wu M, Zhang L, Lv M, Liao M, Qu S, Liang W. Development of a multiplex recombinase amplification assay for the rapid and concurrent detection of human DNA and sex identification. Forensic Sci Int Genet 2025; 78:103300. [PMID: 40359613 DOI: 10.1016/j.fsigen.2025.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/24/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
In forensic practice, it is essential to identify human DNA and determine the sex of individuals from biological samples collected at crime scenes. Currently, the common detection methods mainly focus on targeted DNA analysis based on PCR technology, which is time-consuming and relies on laboratory equipment. In recent years, recombinase polymerase amplification (RPA), as one of ubiquitous isothermal amplification technology, has gained popularity across various diagnostic fields due to its advantages of rapid processing and minimal temperature control requirements. This study has developed a multiplex RPA assay suitable for human and sex components identification. The assay has good sensitivity (as low as 25 pg) and strong tolerance to inhibitors (in the presence of 200 ng/μL humic acid, 400 ng/μL tannic acid, and 8000 ng/μL collagen). Furthermore, we combined the alkaline lysis and RPA detection to construct a rapid detection scheme, which can shorten detection time to half an hour. We also conducted a preliminary exploration of the visualization scheme for the constructed RPA assay. The above research demonstrates simultaneous and rapid detection of human and sex components, offering an accurate and sensitive detection scheme.
Collapse
Affiliation(s)
- Yazi Zheng
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Guihong Liu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qiushuo Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiaming Xue
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mengna Wu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Liang B, Wang C, Qu W, Xu R, Liu Y, Jia H, Tang X, Chen S, Li X, Wang Y, Li J, Liu Y, Wen D, Zha L. A rapid identification system for vaginal fluid stains based on nested recombinant polymerase amplification and lateral flow dipstick. Int J Legal Med 2025; 139:575-587. [PMID: 39661161 DOI: 10.1007/s00414-024-03392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024]
Abstract
In forensic practice, identifying the species of unknown bodily fluid stains can provide assistance in the qualitative analysis and investigation of cases, and vaginal fluid stains, as one of the common bodily fluid stains, are most commonly seen at the scene of sexual assault. At present, the commonly used vaginal peptidase or microscopic detection methods currently have drawbacks such as high false negative rates, poor sensitivity, and high requirements for sample integrity and background color. However, in forensic investigations, the test materials have specificity and scarcity, making it difficult to ensure their quantity and quality. Thus, in order to achieve rapid and sensitive detection of vaginal fluid stains, in this study, we combined nested PCR and isothermal amplification technology to construct a rapid detection system for suspicious vaginal fluid stains using lateral flow dipstick. This system achieves detection by detecting the specific marker microbial community Lactobacillus crispatus in vaginal fluid, and has a high sensitivity and accuracy, which can achieve detection at template quantities as low as 2.31 copies. More importantly, the system can achieve detection at a constant temperature of 37 °C without the need for complex instruments. It can provide rapid and sensitive identification results, providing assistance for subsequent forensic material extraction and individual identification.
Collapse
Affiliation(s)
- Bin Liang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Chudong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Weifeng Qu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Ruyi Xu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Yi Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Hongtao Jia
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Siqi Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Xue Li
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yue Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Jienan Li
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China
| | - Ying Liu
- Department of Oral Implantology, Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Road, Kaifu District, Changsha, Hunan Province, PR China
| | - Dan Wen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China.
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No. 172 Tongzipo Road, Changsha, Hunan Province, 410013, PR China.
| |
Collapse
|
3
|
Liu Z, Wang J, Li Z, Zhang G. mRNA for Body Fluid and Individual Identification. Electrophoresis 2025; 46:44-55. [PMID: 39498727 DOI: 10.1002/elps.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
Biological stains are one of the most important pieces of evidence, playing a multifaceted role in forensic investigations. An integral facet of forensic practice involves the identification of body fluids, typically achieved through chemical and enzymatic reactions. In recent decades, the introduction of mRNA markers has been posited as a pivotal advancement to augment the capabilities of body fluid identification (BFID). The mRNA coding region single-nucleotide polymorphisms (cSNPs) also present notable advantages, particularly in the task of individual identification. Here, we review the specificity and stability of mRNA markers in the context of BFID and the prowess of mRNA polymorphism in individual identification. Additionally, innovative methods for mRNA detection are discussed.
Collapse
Affiliation(s)
- Zidong Liu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Jiaqi Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Zeqin Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Gengqian Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
4
|
Xiao Y, Tan M, Song J, Huang Y, Lv M, Liao M, Yu Z, Gao Z, Qu S, Liang W. Developmental validation of an mRNA kit: A 5-dye multiplex assay designed for body-fluid identification. Forensic Sci Int Genet 2024; 71:103045. [PMID: 38615496 DOI: 10.1016/j.fsigen.2024.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Identifying the sources of biosamples found at crime scenes is crucial for forensic investigations. Among the markers used for body fluid identification (BFI), mRNA has emerged as a well-studied marker because of its high specificity and remarkable stability. Despite this potential, commercially available mRNA kits specifically designed for BFI are lacking. Therefore, we developed an mRNA kit that includes 21 specific mRNA markers of body fluids, along with three housekeeping genes for BFI, to identify four forensic-relevant fluids (blood, semen, saliva, and vaginal fluids). In this study, we tested 451 single-body-fluid samples, validated the universality of the mRNA kit, and obtained a gene expression profile. We performed the validation studies in triplicates and determined the sensitivity, specificity, stability, precision, and repeatability of the mRNA kit. The sensitivity of the kit was found to be 0.1 ng. Our validation process involved the examination of 59 RNA mixtures, 60 body fluids mixtures, and 20 casework samples, which further established the reliability of the kit. Furthermore, we constructed five classifiers that can handle single-body fluids and mixtures using this kit. The classifiers output possibility values and identify the specific body fluids of interest. Our results showed the reliability and suitability of the BFI kit, and the Random Forest classifier performed the best, with 94% precision. In conclusion, we developed an mRNA kit for BFI which can be a promising tool for forensic practice.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Mengyu Tan
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jinlong Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yihang Huang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zailiang Yu
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Zhixiao Gao
- Suzhou Microread Genetics Co.,Ltd, Suzhou, Jiangsu, PR China
| | - Shengqiu Qu
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
5
|
Thanakiatkrai P, Chenphun C, Kitpipit T. African and Asian elephant ivory discrimination using a portable strip test. Forensic Sci Int Genet 2024; 70:103027. [PMID: 38422900 DOI: 10.1016/j.fsigen.2024.103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Currently, the global elephant population has significantly declined due to the poaching of elephants for their ivory, and this is the reason why elephants are listed in the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). However, Thailand allows the legal trade of ivory from registered, domesticated Asian elephants, leading to the smuggling of African elephant ivory, and passing them off as Asian elephant ivory. Therefore, this research aims to develop and validate a portable strip test to discriminate between Asian and African elephants DNA, using Recombinase Polymerase Amplification (RPA) and Lateral Flow Dipstick assay (LFD) according to international standards. The results showed that the strip test can be successfully developed with 100% accuracy (n = 105). This kit is specific to elephants, has a detection limit of 0.125 ng of DNA, and can effectively discriminate a variety of elephant ivory, including raw ivory, ivory products, and aged ivory over 25 years old, which had been damaged by fire, all with 100% accuracy (n = 117). Additionally, the developed strip test is designed to be portable and cost-effective. It does not require expensive laboratory equipment and provides a faster analysis process compared with conventional PCR-based methods. This will expedite the legal process and enforcement of laws related to elephant conservation, reducing the opportunities for illegal activities, and enabling timely prosecution under relevant wildlife conservation laws in Thailand and internationally.
Collapse
Affiliation(s)
- Phuvadol Thanakiatkrai
- Forensic Science Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Thailand
| | - Chanokkarn Chenphun
- Forensic Science Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Thailand
| | - Thitika Kitpipit
- Forensic Science Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Thailand.
| |
Collapse
|
6
|
Kubo S, Amai K, Tanaka J, Niimi H. One-tube, two-step isothermal amplification of histatin 3 mRNA for saliva screening. Forensic Sci Int 2023; 352:111847. [PMID: 37837846 DOI: 10.1016/j.forsciint.2023.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/23/2023] [Indexed: 10/16/2023]
Abstract
Saliva samples are frequently collected at crime scenes. Salivary mRNA profiling, such as that of histatin 3 (HTN3), is a highly specific approach that overcomes the limitation of traditional amylase tests. However, typical mRNA detection methods based on reverse transcription PCR (RT-PCR) are time-consuming and labor-intensive. Here, we report a one-tube, two-step isothermal amplification assay for HTN3 mRNA, which enables rapid, simple, and sensitive screening of saliva. The first step is an RT-recombinase polymerase amplification (RT-RPA) assay at 42 °C for 20 min; the second step is a loop-mediated isothermal amplification (LAMP) assay at 65 °C for 30 min. The reactions can be performed in a closed tube, and the products are detected using real-time fluorescence analysis. The assay sensitivity was 0.5 µL of saliva samples. It also detected HTN3 mRNA in mixed and mock samples, demonstrating its applicability to actual forensic samples. These findings suggest that our strategy is promising for screening of saliva from forensic samples.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan.
| | - Keito Amai
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan
| | - Jin Tanaka
- Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Chen X, Xu H, Zhu B. Forensic validation of a combined analysis of mRNA and miRNA markers for precise tissue origin inferences of five kinds of body fluids by RT-qPCR. Electrophoresis 2023; 44:1714-1724. [PMID: 37847880 DOI: 10.1002/elps.202300059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/12/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023]
Abstract
Correctly inferring the tissue origin types of forensic-relevant body fluids left at a crime scene is beneficial for reconstructing a crime scene. However, it is still a challenge to accurately identify different kinds of body fluids at a crime scene. Shorter sequence length and anti-degradation microRNA (miRNA) can be used to infer the tissue sources of biological fluid traces, but a limited number of miRNAs are tissue specific. The application of messenger RNA (mRNA) has been confirmed by different studies based on its high tissue specificity. According to the differential expression features of mRNA or miRNA in forensically relevant body fluids, this study developed a simultaneously reversed mRNA and miRNA system and then used these two types of RNAs for the determinations of five common kinds of body fluids. Compared with previously reported single kind of mRNA or miRNA assay, the combined mRNA and miRNA system showed good advantages for human body fluid identifications, especially it could be applied in mixed samples. In conclusion, the obtained results indicated that this combined mRNA and miRNA system might provide a scientific and accurate reference for body fluid identifications.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Hui Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
8
|
Kubo S, Niimi H, Kitajima I. Sperm mRNA screening by reverse transcription-recombinase polymerase amplification (RT-RPA) assay: Decision-making for differential extraction. Anal Biochem 2023; 670:115121. [PMID: 36972745 DOI: 10.1016/j.ab.2023.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
The presence of sperm cells is an indicator for differential extraction on sexual assault samples. In general, sperm cells are identified by microscopic analysis; however, this conventional method takes time and effort, even for trained personnel. Here, we present a reverse transcription-recombinase polymerase amplification (RT-RPA) assay targeting sperm mRNA marker (PRM1). The RT-RPA assay requires only 40 min for PRM1 detection and demonstrates a sensitivity of 0.1 μL of semen. Our results indicate that the RT-RPA assay may be a rapid, simple, and specific strategy for screening sperm cells in sexual assault samples.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa, 920-8553, Japan.
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Isao Kitajima
- Administrative Office, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
9
|
Kubo S, Niimi H, Kitajima I. Improved reverse transcription-recombinase polymerase amplification assay for blood mRNA screening: comparison with one-step RT-qPCR assay. Forensic Sci Int Genet 2023; 63:102808. [PMID: 36462298 DOI: 10.1016/j.fsigen.2022.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
mRNA profiling is effective for body fluid identification because of its sensitivity, specificity, and multiplexing capability. Body fluid mRNA markers can typically be detected using RT-qPCR, RT-PCR followed by capillary electrophoresis, or targeted RNA sequencing. However, due to the multiple handling steps involved, the analysis of many forensic samples using these methods requires time and effort. Here, we describe a rapid and simple method for detecting the blood mRNA marker hemoglobin β (HBB), intended for use in screening before definitive blood identification. We employed a reverse transcription-recombinase polymerase amplification (RT-RPA) assay that can detect target mRNA within 20 min in a single tube. For comparison, we used a one-step RT-qPCR assay. We optimized the RT-RPA assay and found that it could detect HBB from 10-3-10-4 ng of leukocyte RNA and approximately 10-3 µL of blood. The sensitivity was 10-fold lower than that of the one-step RT-qPCR assay but higher than that of the comprehensive analysis methods for definitive blood identification. Thus, the rapidity and sensitivity of the RT-RPA assay support its use as a screening tool. We also found that the RT-RPA assay was highly tolerant to common inhibitors such as humic acid, hematin, tannic acid, and melanin. Considering the inhibitor tolerability, we integrated a simple lysis method (addition of TCEP/EDTA and heating at 95 °C for 5 min) without the RNA purification process into the RT-RPA assay. This direct assay successfully detected HBB in crude blood samples. Our findings suggest that the RT-RPA assay for HBB is a promising strategy for mRNA-based blood screening.
Collapse
Affiliation(s)
- Seiji Kubo
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Forensic Science Laboratory, Ishikawa Prefectural Police Headquarters, 1-1 Kuratsuki, Kanazawa 920-8553, Japan.
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Isao Kitajima
- Administrative office, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
10
|
A recombinase polymerase amplification (RPA) combined with strip visualization method for RNA-based presumptive tests of saliva and vaginal secretion. Forensic Sci Int Genet 2023; 62:102788. [PMID: 36265335 DOI: 10.1016/j.fsigen.2022.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Identifying the origin of body fluids is a critical step in a forensic investigation. One widely used method to identify human body fluids is based on the color visualization of immune antigen detection strips for detecting hemoglobin in blood and prostate-specific antigen in semen. It is highly imperative to construct an easy-to-perform, mRNA-based method for the point-of-care identification of other human body fluids, such as saliva and vaginal secretion. Here, we established specific strips with the mRNA markers STATH (for saliva) and SPINK5 (for vaginal secretion) via reverse transcription recombinase polymerase amplification (RT-RPA) and lateral flow dipstick (LFD) assays (RT-RPA-LFD). RT-RPA could be accomplished in a single tube at a wide temperature range of 30-42 ℃ within 10-25 min if we do not count time for RNA extraction. The diluted RPA products were added onto the LFD strip pad to visually observe the color change of the Control/Test line. The tissue specificity and detection limit of the assays were evaluated using the optimized reaction conditions of RPA at 37 ℃ for 15 min. The positive signals of STATH were observed both in saliva and nasal secretions. SPINK5 was positive in a template-dependent manner in 4 out of 30 female urine samples in addition to vaginal secretion and menstrual blood samples. Cross-reactions were not detected in semen, skin swabs, sweat, or male urine. Both assays were capable of detecting aged samples, which were stored for 180 days (saliva) or 300 days (vaginal secretion) at room temperature. Moreover, saliva or vaginal secretion was successfully detected in all kinds of mixtures made from various body fluids. Overall, the rapid strip test method by the RT-RPA-LFD assay is simple, time-saving and highly sensitive for estimating the tissue origin of saliva and vaginal secretion. This method for the rapid RNA-based presumptive tests of the tissue type of body fluids is easy to perform prior to a multiplex mRNA analysis, which can demonstrate more reliable saliva or vaginal secretion identification.
Collapse
|
11
|
Kubo S, Niimi H, Kitajima I. Rapid and direct detection of male DNA by recombinase polymerase amplification assay. Forensic Sci Int Genet 2022; 59:102704. [DOI: 10.1016/j.fsigen.2022.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
|