1
|
do Nascimento NN, Cansian ABM, de Sousa JS, Negrão FN, Tardioli PW, Vieira AMS. Plants lipases: challenges, recent advances, and future prospects - a review. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03164-y. [PMID: 40220056 DOI: 10.1007/s00449-025-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Plant lipases offer a sustainable and promising alternative for various industrial applications, with increasing use in biocatalytic processes in recent years. Leveraging plants as renewable resources reduces dependence on animal or microbial sources, providing significant potential for sustainable lipase production. These lipases are biodegradable and less toxic, enhancing their cost-effectiveness, particularly when sourced from plants with additional economic value. The diversity of plant species offers a wide array of lipases with different properties, broadening their industrial applications. Additionally, integrating plant lipase production into existing agricultural processes by using agricultural residues or by-products as enzyme sources can reduce costs and add value to waste materials. Despite their potential, several challenges must be addressed for the effective utilization of plant-derived lipases. Reducing extraction and purification costs is essential to make these enzymes competitive with other sources. Advancements in the biochemical and structural characterization of plant lipases have facilitated enzymatic engineering approaches to enhance enzyme stability, specificity, and catalytic efficiency. A review of the current research can help identify gaps and suggest new directions for enzyme development and technological advancements. Understanding the mechanisms of action and unique properties of plant lipases can drive innovations in biocatalytic processes. This review aims to highlight the characteristics of plant lipases and the challenges in their extraction, purification, and stability. This study conducted a narrative review using a database of relevant studies, selecting 92 studies. The future of plant lipases holds great promise for transformative impacts across various industries, promoting more sustainable and innovative practices.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Ana Bárbara Moulin Cansian
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
- Institute of Chemistry, University of São Paulo, São Paulo, SP, Brasil
| | - Jumara Silva de Sousa
- Postgraduate Program in Chemical Engieering, State University of Maringá, Maringá, PR, Brazil
| | - Fernanda Novelli Negrão
- Postgraduate Program in Genetics and Enhancement, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Waldir Tardioli
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Carvalho JK, Krüger C, Silveira MAD, Piana PA, Rodrigues MLF, Rosado AF, da Silva de Lucca RA, Fagundes-Klen MR, da Silva EA, Buzanello CV, Teleken JG, Zanella RA. Lipolytic production from solid-state fermentation of the filamentous fungus Penicillium polonicum and its applicability as biocatalyst in the synthesis of ethyl oleate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28632-28643. [PMID: 38558334 DOI: 10.1007/s11356-024-33007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.
Collapse
Affiliation(s)
- Jéssyca Ketterine Carvalho
- Department of Engineering and Exact, Federal University of Paraná, Palotina, PR, Brazil.
- Engineering and Exact Sciences Center, State University Western Paraná, Toledo, PR, Brazil.
| | - Cíntia Krüger
- Department of Engineering and Exact, Federal University of Paraná, Palotina, PR, Brazil
| | | | | | | | | | | | | | - Edson Antônio da Silva
- Engineering and Exact Sciences Center, State University Western Paraná, Toledo, PR, Brazil
| | | | - Joel Gustavo Teleken
- Department of Engineering and Exact, Federal University of Paraná, Palotina, PR, Brazil
| | | |
Collapse
|
3
|
Melo RLF, Sales MB, de Castro Bizerra V, de Sousa Junior PG, Cavalcante ALG, Freire TM, Neto FS, Bilal M, Jesionowski T, Soares JM, Fechine PBA, Dos Santos JCS. Recent applications and future prospects of magnetic biocatalysts. Int J Biol Macromol 2023; 253:126709. [PMID: 37696372 DOI: 10.1016/j.ijbiomac.2023.126709] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Magnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and authors that published the most were identified. The most cited articles showed research hotspots. The analysis of the themes and keywords identified five clusters and showed that the main field of research is associated with obtaining biofuels derived from different types of sustainable vegetable oils. The overview of magnetic biocatalysts showed that these materials are also employed in biosensors, photothermal therapy, environmental remediation, and medical applications. The industry shows a significant interest, with the number of patents increasing. Future studies should focus on immobilizing new lipases in unique materials with magnetic profiles, aiming to improve the efficiency for various biotechnological applications.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil
| | - Misael Bessa Sales
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil
| | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233 Gdansk, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza CEP 60451-970, CE, Brazil; Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza CEP 60455-760, CE, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790-970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455-760, CE, Brazil.
| |
Collapse
|
4
|
Ge F, Chen G, Qian M, Xu C, Liu J, Cao J, Li X, Hu D, Xu Y, Xin Y, Wang D, Zhou J, Shi H, Tan Z. Artificial Intelligence Aided Lipase Production and Engineering for Enzymatic Performance Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14911-14930. [PMID: 37800676 DOI: 10.1021/acs.jafc.3c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the development of artificial intelligence (AI), tailoring methods for enzyme engineering have been widely expanded. Additional protocols based on optimized network models have been used to predict and optimize lipase production as well as properties, namely, catalytic activity, stability, and substrate specificity. Here, different network models and algorithms for the prediction and reforming of lipase, focusing on its modification methods and cases based on AI, are reviewed in terms of both their advantages and disadvantages. Different neural networks coupled with various algorithms are usually applied to predict the maximum yield of lipase by optimizing the external cultivations for lipase production, while one part is used to predict the molecule variations affecting the properties of lipase. However, few studies have directly utilized AI to engineer lipase by affecting the structure of the enzyme, and a set of research gaps needs to be explored. Additionally, future perspectives of AI application in enzymes, including lipase engineering, are deduced to help the redesign of enzymes and the reform of new functional biocatalysts. This review provides a new horizon for developing effective and innovative AI tools for lipase production and engineering and facilitating lipase applications in the food industry and biomass conversion.
Collapse
Affiliation(s)
- Feiyin Ge
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Gang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Minjing Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Cheng Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiaqi Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Xinchao Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yangsen Xu
- Dongtai Hanfangyuan Biotechnology Co. Ltd., Yancheng 224241, People's Republic of China
| | - Ya Xin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| |
Collapse
|
5
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
7
|
A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts 2022. [DOI: 10.3390/catal12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study implements a convenient microreactor for biocatalysis with enzymes immobilized on magnetic nanoparticles (MNPs). The enzyme immobilized onto MNPs by adsorption or by covalent bonds was lipase B from Candida antarctica (CaLB). The MNPs for adsorption were obtained by covering the magnetite core with a silica shell and later with hexadecyltrimethoxysilane, while for covalent immobilization, the silica-covered MNPs were functionalized by a layer forming from mixtures of hexadecyl- and 3-(2-aminoethylamino)propyldimethoxymethylsilanes in 16:1 molar ratio, which was further activated with neopentyl glycol diglycidyl ether (NGDE). The resulting CaLB-MNPs were tested in a convenient continuous flow system, created by 3D printing to hold six adjustable permanent magnets beneath a polytetrafluoroethylene tube (PTFE) to anchor the MNP biocatalyst inside the tube reactor. The anchored CaLB-MNPs formed reaction chambers in the tube for passing the fluid through and above the MNP biocatalysts, thus increasing the mixing during the fluid flow and resulting in enhanced activity of CaLB on MNPs. The enantiomer selective acylation of 4-(morpholin-4-yl)butan-2-ol (±)-1, being the chiral alcohol constituent of the mucolytic drug Fedrilate, was carried out by CaLB-MNPs in the U-shape reactor. The CaLB-MNPs in the U-shape reactor were compared in batch reactions to the lyophilized CaLB and to the CaLB-MNPs using the same reaction composition, and the same amounts of CaLB showed similar or higher activity in flow mode and superior activity as compared to the lyophilized powder form. The U-shape permanent magnet design represents a general and easy-to-access implementation of MNP-based flow microreactors, being useful for many biotransformations and reducing costly and time-consuming downstream processes.
Collapse
|
8
|
Tan Z, Chen G, Zhao Y, Shi H, Wang S, Bilal M, Li D, Li X. Digging and identification of novel microorganisms from the soil environments with high methanol-tolerant lipase production for biodiesel preparation. ENVIRONMENTAL RESEARCH 2022; 212:113570. [PMID: 35671798 DOI: 10.1016/j.envres.2022.113570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Converting renewable biomass into carbon-neutral biofuels is one of the most effective strategies to achieve zero carbon emissions and contribute to environmental protection. Microorganisms from the soil were primarily screened on the rhodamine B-plate for highly-active lipase producing strains and re-screened on a tributyrin-methanol plate using crude lipases produced from the initially screened-out strains. The lipase-producing strains with higher methanol-tolerant lipase were identified based on morphological characteristics and 16S rDNA sequencing. The crude lipases with much higher methanol-tolerance from screened top-4 strains, Stenotrophomonas maltophilia D18, Lysinibacillus fusiformis B23, Acinetobacter junii C69, and A. pittii C95 showed temperature optima of 25 °C, 35 °C, 30 °C, and 30 °C at pH 7.0, respectively, while their pH optima were 8.0, 7.0, 7.5, and 7.5 at each optimum temperature, respectively. After 24-h incubation, they retained more than 85% of their original activities in 25%, 15%, 20%, and 20% of methanol, respectively. They catalyzed the conversion of soybean oil into biodiesel by yields of 63.1%, 35.4%, 74.6%, and 78.5% after 24-h reactions, respectively. In conclusion, the as-isolated microorganisms producing high methanol-tolerant lipase are considered promising to provide robust biocatalyst for efficient biodiesel preparation and other industrial applications.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China.
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Yipin Zhao
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China.
| | - Shiyan Wang
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Dong Li
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| | - Xiangqian Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, PR China
| |
Collapse
|
9
|
Immobilized Lipase in Resolution of Ketoprofen Enantiomers: Examination of Biocatalysts Properties and Process Characterization. Pharmaceutics 2022; 14:pharmaceutics14071443. [PMID: 35890337 PMCID: PMC9317814 DOI: 10.3390/pharmaceutics14071443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, lipase from Aspergillus niger immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange was used in the kinetic resolution of the ketoprofen racemic mixture. The FTIR spectra of samples after immobilization of enzyme-characteristic signals can be seen, and an increase in particle size diameters upon immobilization is observed, indicating efficient immobilization. The immobilization yield was on the level of 93% and 86% for immobilization unmodified and modified support, respectively, whereas activity recovery reached around 90% for both systems. The highest activity of immobilized biocatalysts was observed at pH 7 and temperature 40 °C and pH 8 and 20 °C for lipase immobilized by physical immobilization by the adsorption interactions and partially interfacial activation and mixed physical immobilization via interfacial activation and ion exchange, respectively. It was also shown that over a wide range of pH (from 7 to 10) and temperature (from 20 to 60 °C) both immobilized lipases retained over 80% of their relative activity, indicating improvement of enzyme stability. The best solvent during kinetic resolution of enantiomers was found to be phosphate buffer at pH 7, which obtained the highest efficiency of racemic ketoprofen methyl ester resolution at the level of over 51%, followed by enantiomeric excess 99.85% in the presence of biocatalyst obtained by physical immobilization by the adsorption interactions and partially interfacial activation.
Collapse
|
10
|
Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14127032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Environmental pollution caused by conventional petro-diesel initiates at time of crude oil extraction and continues until its consumption. The resulting emission of poisonous gases during the combustion of petroleum-based fuel has worsened the greenhouse effect and global warming. Moreover, exhaustion of finite fossil fuels due to extensive exploitation has made the search for renewable resources indispensable. In light of this, biodiesel is a best possible substitute for the regular petro-diesel as it is eco-friendly, renewable, and economically viable. For effective biodiesel synthesis, the selection of potential feedstock and choice of efficient catalyst is the most important criteria. The main objective of this bibliographical review is to highlight vital role of different catalytic systems acting on variable feedstock and diverse methods for catalysis of biodiesel synthesis reactions. This paper further explores the effects of optimized reaction parameters, modification in chemical compositions, reaction operating parameters, mechanism and methodologies for catalysts preparation, stability enhancement, recovery, and reusability with the maximum optimum activity of catalysts. In future, the development of well-planned incentive structures is necessary for systematic progression of biodiesel process. Besides this, the selection of accessible and amended approaches for synthesis and utilization of specific potential catalysts will ensure the sustainability of eco-green biodiesel.
Collapse
|