1
|
Berčík J, Vietoris V, Korčok M, Rusková A, Durec J, Neomániová K. Organoleptic properties and neuroimaging response on the perception of edible gels. Heliyon 2025; 11:e41649. [PMID: 39866423 PMCID: PMC11758417 DOI: 10.1016/j.heliyon.2025.e41649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
The rapidly increasing number of elderly people in the world highlights the need for the development of innovative foods with modified textures that do not expose the elderly to the risks associated with food consumption (risk of aspiration, suffocation, and chocking). Providing specific food such as edible gel for the elderly population and the study of their properties is a challenge for the scientific community. There are some available gels in the supermarkets destined for the sports population, with specific texture and technological properties that could be used and extrapolated for senior people. To explore this potential, five types of sport commercial gels purchased from a local Slovak market were characterized in order to evaluate their technological properties and to know if these types of gels are suitable for the senior population. The energy gels were evaluated using acceptance testing, involving 75 seniors who evaluated important organoleptic attributes by a combination of hedonic and intensity scales. The same consumer panel then profiled the gels using the Temporal Dominance of Sensations (TDS) technique. The prevalence of food neophobia was measured with the Food Neophobia Scale (FNS) and also using neuroimaging and biometric methods. The results suggest that there are significant differences in the perception of edible gels, as confirmed by measurements via electroencephalography (EEG) and Facereading. We conclude by suggesting the potential of specific foods such as edible gels for the elderly population as our findings also confirm that the composition of these specific and sustainable foods may elicit different perceptions. This highlights the need to use biometric and neuroimaging methods in food research in order to create more optimal formulations for specific populations.
Collapse
Affiliation(s)
- Jakub Berčík
- Institute of Marketing, Trade and Social Studies, Faculty of Economics and Management, Slovak University of Agriculture, 949 76, Nitra, Slovakia
| | - Vladimír Vietoris
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76, Nitra, Slovakia
| | - Melina Korčok
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76, Nitra, Slovakia
| | - Adriana Rusková
- Institute of Marketing, Trade and Social Studies, Faculty of Economics and Management, Slovak University of Agriculture, 949 76, Nitra, Slovakia
| | - Ján Durec
- McCarter, Inc., 821 01, Bratislava, Slovakia
| | - Katarína Neomániová
- Institute of Marketing, Trade and Social Studies, Faculty of Economics and Management, Slovak University of Agriculture, 949 76, Nitra, Slovakia
| |
Collapse
|
2
|
Niu R, Zhao R, Hu H, Yu X, Huang Z, Cheng H, Yin J, Zhou J, Xu E, Liu D. Co-encapsulation of hydrophilic and hydrophobic bioactives stabilized in nanostarch-assisted emulsion for inner core gel of coaxial 3D printing. Carbohydr Polym 2024; 343:122499. [PMID: 39174108 DOI: 10.1016/j.carbpol.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 08/24/2024]
Abstract
3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.
Collapse
Affiliation(s)
- Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Haohao Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xinyao Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhaojing Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jianwei Zhou
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| |
Collapse
|
3
|
Xin Q, Niu R, Chen Q, Liu D, Xu E. Stable cytoactivity of piscine satellite cells in rice bran-gelatin hydrogel scaffold of cultured meat. Int J Biol Macromol 2024; 277:134242. [PMID: 39084438 DOI: 10.1016/j.ijbiomac.2024.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
In order to achieve high cell adhesion and growth efficiency on scaffolds for cultured meat, animal materials, especially gelatin, are necessary though the disadvantages of weak mechanical properties and poor stability of their hydrogel scaffolds are present during cell cultivation. Here, we use rice bran as a kind of filling and supporting materials to develop a composite scaffold with gelatin for fish cell cultivation, where rice bran is also inexpensive from high yield fibrous agricultural by-product. The rice bran (with a proportion of 1, 3, 5, 7, 10 to 3 of gelatin) could evenly distributed in the three-dimensional network composed of gelatin hydrogel. It contributed to delaying swelling and degradation rates, fixing water and improving elastic modulus. It is important that rice bran-gelatin hydrogel scaffolds (especially the hydrogel with 70 % rice bran, db) promoted piscine satellite cells (PSCs) proliferation effectively compared to the pure gelatin hydrogel, and the former could also support the differentiation of PSCs. Overall, this work showed a positive promotion to explore new source of scaffold materials like agricultural by-product for reducing the cost of cell cultured meat production.
Collapse
Affiliation(s)
- Qipu Xin
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
4
|
Prasad S, Athokpam M, Purohit SR. Recent advances in gellan gum production and modification for enhanced applicability in food printing and bioactive delivery applications. Carbohydr Res 2024; 543:109225. [PMID: 39096563 DOI: 10.1016/j.carres.2024.109225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The importance of Gellan gum has been increasing gradually and its unique characteristics are suitable for various advanced food technologies. This review outlines recent developments in gellan gum production, modification, and newer applications focusing on food printing and bioactive delivery applications, in the last three years. The yield and production condition of gellan gum is a major factor that affects the cost and its applications. Moreover, modified Gellan gum has been shown to have superior characteristics and functionality as compared to native one. The viscosifying, thermosensitive, gelling etc. characteristics of gellan gum makes it an crucial ingredient in case of preparation of 3D printing ink. Further, gellan gum is also found to be important wall material in case of bioactive delivery application through encapsulation. Optimized methods of production, sustainable feedstock, and stress conditions are critical for the desired functionality and yield of the Gellan gum.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Manisana Athokpam
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
5
|
Caron E, Van de Walle D, Dewettinck K, Marchesini FH. State of the art, challenges, and future prospects for the multi-material 3D printing of plant-based meat. Food Res Int 2024; 192:114712. [PMID: 39147544 DOI: 10.1016/j.foodres.2024.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 08/17/2024]
Abstract
The emergence of innovative plant-based meat analogs, replicating the flavor, texture, and appearance of animal meat cuts, is deemed crucial for sustainably feeding a growing population while mitigating the environmental impact associated with livestock farming. Multi-material 3D food printing (MM3DFP) has been proposed as a potentially disruptive technology for manufacturing the next generation of plant-based meat analogs. This article provides a comprehensive review of the state of the art, addressing various aspects of 3D printing in the realm of plant-based meat. The disruptive potential of printed meat analogs is discussed with particular emphasis on protein-rich, lipid-rich, and blood-mimicking food inks. The printing parameters, printing requirements, and rheological properties at the different printing stages are addressed in detail. As food rheology plays a key role in the printing process, an appraisal of this subject is performed. Post-printing treatments are assessed based on the extent of improvement in the quality of 3D-printed plant-based meat analogs. The meat-mimicking potential is revealed through sensory attributes, such as texture and flavor. Furthermore, there has been limited research into food safety and nutrition. Economically, the 3D printing of plant-based meat analogs demonstrates significant market potential, contingent upon innovative decision-making strategies and supportive policies to enhance consumer acceptance. This review examines the current limitations of this technology and highlights opportunities for future developments.
Collapse
Affiliation(s)
- Elise Caron
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium; Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium.
| | - Davy Van de Walle
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Ghent University, 9000 Ghent, Belgium
| | - Flávio H Marchesini
- Department of Materials, Textiles and Chemical Engineering, Ghent University, 9052 Zwijnaarde, Belgium
| |
Collapse
|
6
|
Abedini A, Sohrabvandi S, Sadighara P, Hosseini H, Farhoodi M, Assadpour E, Alizadeh Sani M, Zhang F, Seyyedi-Mansour S, Jafari SM. Personalized nutrition with 3D-printed foods: A systematic review on the impact of different additives. Adv Colloid Interface Sci 2024; 328:103181. [PMID: 38749383 DOI: 10.1016/j.cis.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Three-dimensional (3D) printing is one of the world's top novel technologies in the food industry due to the production of food in different conditions and places (restaurants, homes, catering, schools, for dysphagia patients, and astronauts' food) and the production of personalized food. Nowadays, 3D printers are used in the main food industries, including meat, dairy, cereals, fruits, and vegetables, and have been able to produce successfully on a small scale. However, due to the expansion of this technology, it has challenges such as high-scale production, selection of printable food, formulation optimization, and food production according to the consumer's opinion. Food additives (gums, enzymes, proteins, starches, polyphenols, spices, probiotics, algae, edible insects, oils, salts, vitamins, flavors, and by-products) are one of the main components of the formulation that can be effective in food production according to the consumer's attitude. Food additives can have the highest impact on textural and sensory characteristics, which can be effective in improving consumer attitudes and reducing food neophobia. Most of the 3D-printed food cannot be printed without the presence of hydrocolloids, because the proper flow of the selected formulation is one of the key factors in improving the quality of the printed product. Functional additives such as probiotics can be useful for specific purposes and functional food production. Food personalization for specific diseases with 3D printing technology requires a change in the formulation, which is closely related to the selection of correct food additives. For example, the production of 3D-printed plant-based steaks is not possible without the presence of additives, or the production of food for dysphagia patients is possible in many cases by adding hydrocolloids. In general, additives can improve the textural, rheological, nutritional, and sensory characteristics of 3D printed foods; so, investigating the mechanism of the additives on all the characteristics of the printed product can provide a wide perspective for industrial production and future studies.
Collapse
Affiliation(s)
- Amirhossein Abedini
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Sepidar Seyyedi-Mansour
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxia e Alimentacion (IAA)- CITEXVI, Universidade de Vigo, 36310 Vigo, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
7
|
Chang MY, Hsia WJ, Chen HS. Breaking Conventional Eating Habits: Perception and Acceptance of 3D-Printed Food among Taiwanese University Students. Nutrients 2024; 16:1162. [PMID: 38674855 PMCID: PMC11054909 DOI: 10.3390/nu16081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Considering the prevalent strain on environmental resources imparted by existing food systems, prioritizing environmental sustainability is an imperative course of action. Subsequently, the shift towards sustainable production and consumption patterns engenders an escalating demand for environmentally conscious food systems. Thus, 3D-printed food technology surfaces are a promising solution noted for their efficacy in curtailing food waste, bolstering environmental sustainability, and imparting innovative strategies to the food supply chain. Herein, we amalgamate the theory of planned behavior (TPB) framework with several variables, namely 'sensory appeal', 'food neophobia', 'perceived health risk', and 'environmental friendliness' to probe the behavioral intentions of Taiwanese university students' perceptions about 3D-printed food. Employing the snowball sampling method, 370 questionnaires were disseminated, out of which 319, constituting an effective retrieval rate of 86.2%, were deemed valid. Statistical analysis produced intriguing findings. Consumers' inclination to purchase 3D-printed food is substantially determined by their attitudes, subjective norms, sensory appeal, food neophobia, perceived health risks, and environmental friendliness. Contrary to our initial hypothesis, perceived behavioral control did not exhibit a significant impact on consumers' propensity to purchase 3D-printed food. Therefore, businesses should focus on magnifying the sensory appeal of 3D-printed food, coupled with precise nutritional labeling, to bolster consumer interest, enhance acceptance, and augment behavioral intentions. This study sheds light on the potential for the development of 3D-printed food in Taiwan, providing an indispensable reference for future endeavors in Taiwan's 3D-printed food industry.
Collapse
Affiliation(s)
- Min-Yen Chang
- Department of Accounting, Jiaxing University, Jiaxing 314001, China;
| | - Wei-Jiun Hsia
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Han-Shen Chen
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung City 40201, Taiwan;
- Department of Medical Management, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
8
|
Auer J, Östlund J, Nilsson K, Johansson M, Herneke A, Langton M. Nordic Crops as Alternatives to Soy-An Overview of Nutritional, Sensory, and Functional Properties. Foods 2023; 12:2607. [PMID: 37444345 DOI: 10.3390/foods12132607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (Vicia faba), yellow pea (Pisum sativum), and oat (Avena sativa)). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available. Off-flavors in all pulses, including soy, and in cereals impair the sensory properties of the resulting food products, and few mitigation methods are successful. The functional properties of faba bean, pea, and oat are comparable to those of soy, which makes them usable for 3D printing, gelation, emulsification, and extrusion. Enzymatic treatment, fermentation, and fibrillation can be applied to improve the nutritional value, sensory attributes, and functional properties of all the three crops assessed, making them suitable for replacing soy in a broad range of products, although more research is needed on all attributes.
Collapse
Affiliation(s)
- Jaqueline Auer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Johanna Östlund
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Klara Nilsson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Anja Herneke
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
9
|
Xu E, Niu R, Lao J, Zhang S, Li J, Zhu Y, Shi H, Zhu Q, Chen Y, Jiang Y, Wang W, Yin J, Chen Q, Huang X, Chen J, Liu D. Tissue-like cultured fish fillets through a synthetic food pipeline. NPJ Sci Food 2023; 7:17. [PMID: 37149658 PMCID: PMC10164169 DOI: 10.1038/s41538-023-00194-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Tissue-like cultured meats of some livestock have successfully been established by different approaches. However, the production of a structure similar to fish fillets is still challenging. Here, we develop tissue-like cultured fish fillets by assembly of large yellow croaker muscle fibers and adipocytes with 3D-printed gel. Inhibition of Tgf-β and Notch signals significantly promoted myogenic differentiation of piscine satellite cells (PSCs). The mixture of fish gelatin and sodium alginate combined with a p53 inhibitor and a Yap activator supported PSC viability and proliferation. Based on the texture of fish muscle tissue, a 3D scaffold was constructed by gelatin-based gel mixed with PSCs. After proliferation and differentiation, the muscle scaffold was filled with cultured piscine adipocytes. Finally, tissue-like fish fillets with 20 × 12 × 4 mm were formed, consisting of 5.67 × 107 muscles and 4.02 × 107 adipocytes. The biomanufacture of tissue-like cultured fish fillet here could be a promising technology to customize meat production with high fidelity.
Collapse
Affiliation(s)
- Enbo Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310028, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Jihui Lao
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengliang Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Jie Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Yiyuan Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Huimin Shi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Yijian Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuyan Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Jun Yin
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310028, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Xiao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory for Corneal Diseases Research of Zhejiang Province, Hangzhou, 310058, China.
| | - Jun Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310028, China.
| |
Collapse
|
10
|
An Insight into Recent Advancement in Plant- and Algae-Based Functional Ingredients in 3D Food Printing Ink Formulations. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03040-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
11
|
Effects of Texture Modifiers on Physicochemical Properties of 3D-Printed Meat Mimics from Pea Protein Isolate-Alginate Gel Mixture. Foods 2022; 11:foods11243947. [PMID: 36553689 PMCID: PMC9778299 DOI: 10.3390/foods11243947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Meat mimics were prepared from pea protein isolate-alginate gel via 3D printing. The texture of 3D-printed meat mimics was modified by incorporating transglutaminase (TGase) or κ-carrageenan (κc) at 0.3, 0.6 or 0.9% (w/w) into printing material prior to 3D printing. Rheological properties of modified printing material were measured; results were used to support 3D printing results. Textural properties of raw and cooked meat mimics were determined and compared with those of selected animal meats, namely, pork tenderloin, chicken breast, salmon meat and Spanish mackerel. Cooking losses of meat mimics were also determined. G', G″ and tan δ of TGase-modified material were not significantly different from those of the control. In contrast, increasing κc content resulted in increased G' and G″; tan δ of all κc-modified samples decreased from that of the control. Addition of TGase at 0.9% into printing material increased the hardness of raw meat mimics, while κc at 0.9% increased hardness of cooked meat mimics. Raw meat mimics treated with 0.9% TGase exhibited texture closest to raw salmon. Texture of cooked meat mimics treated with 0.9% κc was closest to that of cooked salmon. TGase-treated meat mimics tended to experience lower cooking losses, while κc-treated meat mimics exhibited an opposite trend.
Collapse
|
12
|
|