1
|
Pearce TL, Scott JB, Wilson CR, Gent DH. Evolution of the Genetic Structure of the Didymella tanaceti Population During Development of Succinate Dehydrogenase Inhibitor Resistance. PHYTOPATHOLOGY 2023; 113:1946-1958. [PMID: 37129263 DOI: 10.1094/phyto-10-22-0385-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Emergence of pathogens with decreased sensitivity to succinate dehydrogenase inhibitor fungicides is a global agronomical issue. Analysis of Didymella tanaceti isolates (n = 173), which cause tan spot of pyrethrum (Tanacetum cinerariifolium), collected prior to (2004 to 2005) and after (2009, 2010, 2012, and 2014) the commercial implementation of boscalid in Tasmanian pyrethrum fields identified that insensitivity developed over time and has become widespread. To evaluate temporal change, isolates were characterized for frequency of mutations in the succinate dehydrogenase (Sdh) B, C, and D subunits associated with boscalid resistance, mating type, and SSR genotype. All isolates from 2004 and 2005 exhibited wild-type (WT) Sdh alleles. Seven known Sdh substitutions were identified in isolates collected from 2009 to 2014. In 2009, 60.7% had Sdh substitutions associated with boscalid resistance in D. tanaceti. The frequency of WT isolates decreased over time, with no WT isolates identified in 2014. The frequency of the SdhB-H277Y genotype increased from 10.7 to 77.8% between 2009 and 2014. Genotypic evidence suggested that a shift in the population structure occurred between 2005 and 2009, with decreases in gene diversity (uh; 0.51 to 0.34), genotypic evenness (E5; 0.96 to 0.67), genotypic diversity (G; 9.3 to 6.8), and allele frequencies. No evidence was obtained to support the rapid spread of Sdh genotypes by clonal expansion of the population. Thus, insensitivity to boscalid has developed and become widespread within a diverse population within 4 years of usage. These results suggest that D. tanaceti can disperse insensitivity through repeated frequent mutation, sexual recombination, or a combination of both.
Collapse
Affiliation(s)
- Tamieka L Pearce
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Jason B Scott
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005
| | - David H Gent
- U.S. Department of Agriculture-Agriculture Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| |
Collapse
|
2
|
Havenga M, Wingfield BD, Wingfield MJ, Roets F, Dreyer LL, Tatham CT, Duong TA, Wilken PM, Chen S, Aylward J. Mating strategy and mating type distribution in six global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans. Fungal Genet Biol 2020; 137:103350. [DOI: 10.1016/j.fgb.2020.103350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
|
3
|
Ametrano CG, Grewe F, Crous PW, Goodwin SB, Liang C, Selbmann L, Lumbsch HT, Leavitt SD, Muggia L. Genome-scale data resolve ancestral rock-inhabiting lifestyle in Dothideomycetes (Ascomycota). IMA Fungus 2019; 10:19. [PMID: 32647623 PMCID: PMC7325674 DOI: 10.1186/s43008-019-0018-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Dothideomycetes is the most diverse fungal class in Ascomycota and includes species with a wide range of lifestyles. Previous multilocus studies have investigated the taxonomic and evolutionary relationships of these taxa but often failed to resolve early diverging nodes and frequently generated inconsistent placements of some clades. Here, we use a phylogenomic approach to resolve relationships in Dothideomycetes, focusing on two genera of melanized, extremotolerant rock-inhabiting fungi, Lichenothelia and Saxomyces, that have been suggested to be early diverging lineages. We assembled phylogenomic datasets from newly sequenced (4) and previously available genomes (238) of 242 taxa. We explored the influence of tree inference methods, supermatrix vs. coalescent-based species tree, and the impact of varying amounts of genomic data. Overall, our phylogenetic reconstructions provide consistent and well-supported topologies for Dothideomycetes, recovering Lichenothelia and Saxomyces among the earliest diverging lineages in the class. In addition, many of the major lineages within Dothideomycetes are recovered as monophyletic, and the phylogenomic approach implemented strongly supports their relationships. Ancestral character state reconstruction suggest that the rock-inhabiting lifestyle is ancestral within the class.
Collapse
Affiliation(s)
- Claudio G Ametrano
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Felix Grewe
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands
| | - Stephen B Goodwin
- USDA-ARS, Crop Production and Pest Control Research Unit and Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 USA
| | - Chen Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109 China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell' Università, 01100 Viterbo, Italy.,Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - H Thorsten Lumbsch
- Grainger Bioinformatics Center and Integrative Research Center, Science and Education, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605 USA
| | - Steven D Leavitt
- Department of Biology and M.L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602 USA
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
4
|
Pearce TL, Scott JB, Pilkington SJ, Pethybridge SJ, Hay FS. Evidence for Sexual Recombination in Didymella tanaceti Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. PHYTOPATHOLOGY 2019; 109:155-168. [PMID: 29989847 DOI: 10.1094/phyto-08-17-0280-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tan spot, caused by Didymella tanaceti, is one of the most important foliar diseases affecting pyrethrum in Tasmania, Australia. Population dynamics, including mating-type ratios and genetic diversity of D. tanaceti, was characterized within four geographically separated fields in both late winter and spring 2012. A set of 10 microsatellite markers was developed and used to genotype 774 D. tanaceti isolates. Isolates were genotypically diverse, with 123 multilocus genotypes (MLG) identified across the four fields. Fifty-eight MLG contained single isolates and Psex analysis estimated that, within many of the recurrent MLG, there were multiple clonal lineages derived from recombination. Isolates of both mating types were at a 1:1 ratio following clone correction in each field at each sampling period, which was suggestive of sexual recombination. No evidence of genetic divergence of isolates of each mating type was identified, indicating admixture within the population. Linkage equilibrium in two of the four field populations sampled in late winter could not be discounted following clone correction. Evaluation of temporal changes in gene and genotypic diversity identified that they were both similar for the two sampling periods despite an increased D. tanaceti isolation frequency in spring. Genetic differentiation was similar in populations sampled between the two sampling periods within fields or between fields. These results indicated that sexual reproduction may have contributed to tan spot epidemics within Australian pyrethrum fields and has contributed to a genetically diverse D. tanaceti population.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
5
|
Scott JB, Gent DH, Pearce TL, Pethybridge SJ, Pilkington SJ, Hay FS. Mycoflora Associated With Pyrethrum Seed and the Integration of Seed Steam Treatment Into Foliar Disease Management Strategies. PLANT DISEASE 2017; 101:1874-1884. [PMID: 30677321 DOI: 10.1094/pdis-03-17-0309-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex of foliar diseases can affect pyrethrum in Australia, but those of greatest importance are ray blight, caused by Stagonosporopsis tanaceti, and tan spot, caused primarily by Didymella tanaceti. Isolation of fungi from pyrethrum seed lots produced over 15 years resulted in recovery of six known pathogens: S. tanaceti, D. tanaceti, Alternaria tenuissima, Colletotrichum tanaceti, Stemphylium botryosum, and Botrytis cinerea. The incidence of S. tanaceti and D. tanaceti isolated from seed varied between 0.9 and 19.5% (mean = 7.7%) and 0 and 24.1% (mean = 5.3%) among years, respectively. Commercial heat treatment of pyrethrum seed via steaming reduced the incidence of D. tanaceti from 10.9 to 0.06% and the incidence of S. tanaceti from 24.6% to nondetectable levels (<0.18%). In a second experiment, both species were reduced to nondetectable levels (<0.20%) from their initial incidences of 22.4 and 2.4%, respectively. In a field study in 2013, colonization of pyrethrum foliage by S. tanaceti was reduced from 21.1 to 14.3% in early winter when heat-treated seed was planted. However, isolation frequency of D. tanaceti was not affected significantly by seed treatment in this year. In a related experiment in 2015, the isolation frequency of D. tanaceti in plots planted from heat-treated seed depended on both prior application of an industry-standard fungicide program and proximity to another pyrethrum field in autumn. The fungus was recovered at a similar frequency in fungicide-treated and nontreated plots located near other pyrethrum fields (13.8 versus 16.3%, respectively), whereas recovery of the pathogen was reduced by fungicide applications in geographically remote pyrethrum fields (6.7 versus 1.4%, respectively). However, these differences in isolation frequency of D. tanaceti in autumn did not obviate the need for later fungicide applications to suppress foliar disease intensity in spring or flower yield in summer, independent of the proximity to other pyrethrum fields. This study suggests that steam treatment of seed can delay development of the foliar disease complex on pyrethrum, although an extremely low level of remaining infected seed or exogenous sources of inoculum necessitates the use of foliar fungicide applications in spring.
Collapse
Affiliation(s)
- Jason B Scott
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - David H Gent
- United States Department of Agriculture - Agricultural Research Services (USDA-ARS), Forage Seed and Cereal Research Unit, and Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Tamieka L Pearce
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Sarah J Pethybridge
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Frank S Hay
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
6
|
Li HX, Gottilla TM, Brewer MT. Organization and evolution of mating-type genes in three Stagonosporopsis species causing gummy stem blight of cucurbits and leaf spot and dry rot of papaya. Fungal Biol 2017; 121:849-857. [PMID: 28889909 DOI: 10.1016/j.funbio.2017.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
Abstract
Population divergence and speciation of closely related lineages can result from reproductive differences leading to genetic isolation. An increasing number of fungal diseases of plants and animals have been determined to be caused by morphologically indistinguishable species that are genetically distinct, thereby representing cryptic species. We were interested in identifying if mating systems among three Stagonosporopsis species (S. citrulli, S. cucurbitacearum, and S. caricae) causing gummy stem blight (GSB) of cucurbits or leaf spot and dry rot of papaya differed, possibly underlying species divergence. Additionally, we were interested in identifying evolutionary pressures acting on the genes controlling mating in these fungi. The mating-type loci (MAT1) of three isolates from each of the three species were identified in draft genome sequences. For the three species, MAT1 was structurally identical and contained both mating-type genes necessary for sexual reproduction, which suggests that all three species are homothallic. However, both MAT1-1-1 and MAT1-2-1 were divergent among species showing rapid evolution with a much greater number of amino acid-changing substitutions detected for the reproductive genes compared with genes flanking MAT1. Positive selection was detected in MAT1-2-1, especially in the highly conserved high mobility group (MATA_HMG-box) domain. Thus, the mating-type genes are rapidly evolving in GSB fungi, but a difference in mating systems among the three species does not underlie their divergence.
Collapse
Affiliation(s)
- Hao-Xi Li
- Department of Plant Pathology, University of Georgia, Athens 30602, USA
| | - Thomas M Gottilla
- Department of Plant Pathology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
7
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Pearce TL, Scott JB, Hay FS, Pethybridge SJ. Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. PHYTOPATHOLOGY 2016; 106:1521-1529. [PMID: 27398744 DOI: 10.1094/phyto-01-16-0038-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tan spot of pyrethrum (Tanacetum cinerariifolium) is caused by the ascomycete Didymella tanaceti. To assess the evolutionary role of ascospores in the assumed asexual species, the structure and arrangement of mating-type (MAT) genes were examined. A single MAT1-1 or MAT1-2 idiomorph was identified in all isolates examined, indicating that the species is heterothallic. The idiomorphs were flanked upstream and downstream by regions encoding pyridoxamine phosphate oxidase-like and DNA lyase-like proteins, respectively. A multiplex MAT-specific polymerase chain reaction assay was developed and used to genotype 325 isolates collected within two transects in each of four fields in Tasmania, Australia. The ratio of isolates of each mating-type in each transect was consistent with a 1:1 ratio. The spatial distribution of the isolates of the two mating-types within each transect was random for all except one transect for MAT1-1 isolates, indicating that clonal patterns of each mating-type were absent. However, evidence of a reduced selection pressure on MAT1-1 isolates was observed, with a second haplotype of the MAT1-1-1 gene identified in 4.4% of MAT1-1 isolates. In vitro crosses between isolates with opposite mating-types failed to produce ascospores. Although the sexual morph could not be induced, the occurrence of both mating-types in equal frequencies suggested that a cryptic sexual mode of reproduction may occur within field populations.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
9
|
Wingfield BD, Ades PK, Al-Naemi FA, Beirn LA, Bihon W, Crouch JA, de Beer ZW, De Vos L, Duong TA, Fields CJ, Fourie G, Kanzi AM, Malapi-Wight M, Pethybridge SJ, Radwan O, Rendon G, Slippers B, Santana QC, Steenkamp ET, Taylor PW, Vaghefi N, van der Merwe NA, Veltri D, Wingfield MJ. IMA Genome-F 4: Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata. IMA Fungus 2015; 6:233-48. [PMID: 26203426 PMCID: PMC4500086 DOI: 10.5598/imafungus.2015.06.01.15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022] Open
Abstract
The genomes of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygami, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata are presented in this genome announcement. These seven genomes are from endophytes, plant pathogens and economically important fungal species. The genome sizes range from 26.6 Mb in the case of Leptographium lundbergii to 44 Mb for Chrysoporthe austroafricana. The availability of these genome data will provide opportunities to resolve longstanding questions regarding the taxonomy of species in these genera, and may contribute to our understanding of the lifestyles through comparative studies with closely related organisms.
Collapse
Affiliation(s)
- Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Peter K. Ades
- Department of Forest and Ecosystem Science, The University of Melbourne, Victoria, 3010, Australia
| | - Fatima A. Al-Naemi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Lisa A. Beirn
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Wubetu Bihon
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. bag x20, Pretoria 0028, South Africa
- Agricultural Research Council, Vegetable and Ornamental Plant Institute, P. Bag X293, Pretoria 0001, South Africa
| | - Jo Anne Crouch
- Systematic Mycology and Microbiology Laboratory, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. bag x20, Pretoria 0028, South Africa
| | - Lieschen De Vos
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Christopher J. Fields
- High Performance Biological Computing Group, Roy J. Carver Biotechnology Center/W.M. Keck Center, University of Illinois at Urbana-Champaign, IL, USA
| | - Gerda Fourie
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. bag x20, Pretoria 0028, South Africa
| | - Aquillah M. Kanzi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Martha Malapi-Wight
- Systematic Mycology and Microbiology Laboratory, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA
| | - Sarah J. Pethybridge
- School of Integrative Plant Sciences, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Osman Radwan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, IL, USA and Department of Plant Production, College of Technology, Zagazig University, Sharkia, Egypt
| | - Gloria Rendon
- High Performance Biological Computing Group, Roy J. Carver Biotechnology Center/W.M. Keck Center, University of Illinois at Urbana-Champaign, IL, USA
| | - Bernard Slippers
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Quentin C. Santana
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. bag x20, Pretoria 0028, South Africa
| | - Paul W.J. Taylor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, 3010, Australia
| | - Niloofar Vaghefi
- School of Integrative Plant Sciences, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. Bag X20, Pretoria 0028, South Africa
| | - Daniel Veltri
- Systematic Mycology and Microbiology Laboratory, U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA
- Oak Ridge Laboratories ARS Research Participation Program, USDA-ARS, Beltsville, MD 20705, USA
| | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P. bag x20, Pretoria 0028, South Africa
| |
Collapse
|
10
|
|