2
|
Sánchez-Montesinos B, Santos M, Moreno-Gavíra A, Marín-Rodulfo T, Gea FJ, Diánez F. Biological Control of Fungal Diseases by Trichoderma aggressivum f. europaeum and Its Compatibility with Fungicides. J Fungi (Basel) 2021; 7:598. [PMID: 34436137 PMCID: PMC8397002 DOI: 10.3390/jof7080598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Our purpose was to evaluate the ability of Trichoderma aggressivum f. europaeum as a biological control agent against diseases from fungal phytopathogens. Twelve isolates of T. aggressivum f. europaeum were obtained from several substrates used for Agaricus bisporus cultivation from farms in Castilla-La Mancha (Spain). Growth rates of the 12 isolates were determined, and their antagonistic activity was analysed in vitro against Botrytis cinerea, Sclerotinia sclerotiorum, Fusarium solani f. cucurbitae, Pythium aphanidermatum, Rhizoctonia solani, and Mycosphaerella melonis, and all isolates had high growth rates. T. aggressivum f. europaeum showed high antagonistic activity for different phytopathogens, greater than 80%, except for P. aphanidermatum at approximately 65%. The most effective isolate, T. aggressivum f. europaeum TAET1, inhibited B. cinerea, S. sclerotiorum, and M. melonis growth by 100% in detached leaves assay and inhibited germination of S. sclerotiorum sclerotia. Disease incidence and severity in plant assays for pathosystems ranged from 22% for F. solani to 80% for M. melonis. This isolate reduced the incidence of Podosphaera xanthii in zucchini leaves by 66.78%. The high compatibility by this isolate with fungicides could allow its use in combination with different pest management strategies. Based on the results, T. aggressivum f. europaeum TAET1 should be considered for studies in commercial greenhouses as a biological control agent.
Collapse
Affiliation(s)
- Brenda Sánchez-Montesinos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Alejandro Moreno-Gavíra
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Teresa Marín-Rodulfo
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain;
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain; (B.S.-M.); (A.M.-G.); (T.M.-R.)
| |
Collapse
|
3
|
Kosanovic D, Grogan H, Kavanagh K. Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response. Fungal Biol 2020; 124:814-820. [PMID: 32883431 DOI: 10.1016/j.funbio.2020.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 12/27/2022]
Abstract
Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.
Collapse
Affiliation(s)
- Dejana Kosanovic
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, Dublin 15, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
4
|
Pradhan S, Babar MA, Bai G, Khan J, Shahi D, Avci M, Guo J, McBreen J, Asseng S, Gezan S, Baik BK, Blount A, Harrison S, Sapkota S, St Amand P, Kunwar S. Genetic dissection of heat-responsive physiological traits to improve adaptation and increase yield potential in soft winter wheat. BMC Genomics 2020; 21:315. [PMID: 32312234 PMCID: PMC7171738 DOI: 10.1186/s12864-020-6717-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Climate change, including higher temperatures (HT) has a detrimental impact on wheat productivity and modeling studies predict more frequent heat waves in the future. Wheat growth can be impaired by high daytime and nighttime temperature at any developmental stage, especially during the grain filling stage. Leaf chlorophyll content, leaf greenness, cell membrane thermostability, and canopy temperature have been proposed as candidate traits to improve crop adaptation and yield potential of wheat under HT. Nonetheless, a significant gap exists in knowledge of genetic backgrounds associated with these physiological traits. Identifying genetic loci associated with these traits can facilitate physiological breeding for increased yield potential under high temperature stress condition in wheat. RESULTS We conducted genome-wide association study (GWAS) on a 236 elite soft wheat association mapping panel using 27,466 high quality single nucleotide polymorphism markers. The panel was phenotyped for three years in two locations where heat shock was common. GWAS identified 500 significant marker-trait associations (MTAs) (p ≤ 9.99 × 10- 4). Ten MTAs with pleiotropic effects detected on chromosomes 1D, 2B, 3A, 3B, 6A, 7B, and 7D are potentially important targets for selection. Five MTAs associated with physiological traits had pleiotropic effects on grain yield and yield-related traits. Seventy-five MTAs were consistently expressed over several environments indicating stability and more than half of these stable MTAs were found in genes encoding different types of proteins associated with heat stress. CONCLUSIONS We identified 500 significant MTAs in soft winter wheat under HT stress. We found several stable loci across environments and pleiotropic markers controlling physiological and agronomic traits. After further validation, these MTAs can be used in marker-assisted selection and breeding to develop varieties with high stability for grain yield under high temperature.
Collapse
Affiliation(s)
- Sumit Pradhan
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Md Ali Babar
- Department of Agronomy, University of Florida, Gainesville, FL, USA.
| | | | - Jahangir Khan
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Dipendra Shahi
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Muhsin Avci
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Jia Guo
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Jordan McBreen
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Senthold Asseng
- Agricultural and Biological Engineering, University of Florida, Gainesville, FL, USA
| | - Salvador Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | | | - Ann Blount
- North Florida Research and Education Cente, Quincy, FL, USA
| | | | - Suraj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, USA
| | | | - Sanju Kunwar
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Elamathi E, Malathi P, Viswanathan R, Ramesh Sundar A. Identification and Characterization of Differentially Expressed Proteins from Trichoderma harzianum During Interaction with Colletotrichum falcatum Causing Red Rot in Sugarcane. SUGAR TECH 2019; 21:765-772. [DOI: 10.1007/s12355-019-00699-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023]
|
6
|
Houbraken J, Seifert KA, Samson RA. Penicillium hermansii, a new species causing smoky mould in white button mushroom production. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1407-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Jia D, Wang B, Li X, Peng W, Zhou J, Tan H, Tang J, Huang Z, Tan W, Gan B, Yang Z, Zhao J. Proteomic Analysis Revealed the Fruiting-Body Protein Profile of Auricularia polytricha. Curr Microbiol 2017; 74:943-951. [DOI: 10.1007/s00284-017-1268-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
|