1
|
Wang S, Wang J, Wang T, Li T, Xu L, Cheng Y, Chang M, Meng J, Hou L. Integrated Transcriptomics-Proteomics Analysis Reveals the Response Mechanism of Morchella sextelata to Pseudodiploöspora longispora Infection. J Fungi (Basel) 2024; 10:604. [PMID: 39330364 PMCID: PMC11433447 DOI: 10.3390/jof10090604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Morels (Morchella spp.) are valuable and rare edible mushrooms with unique flavors and high nutritional value. White mold disease occurring during cultivation has seriously affected the quality and yield of morels in China. In this study, the fungus causing white mold disease in morels was isolated, purified, and identified as Pseudodiploöspora longispora by morphology and molecular biology. In addition, research has shown that P. longispora infection causes wrinkled and rupturing asci, loosened cell walls, and obvious membrane breakage accompanied by severe cytoplasmic leakage in M. sextelata. Interestingly, research has shown that infection with P. longispora can induce the production of an unknown substance in the cells of M. sextelata, which accumulates on the cell membrane, leading to membrane breakage. Furthermore, integrated transcriptomics-proteomics analysis revealed the response mechanism of M. sextelata to P. longispora infection. The results indicate that DEGs and DEPs can be significantly enriched in pathways involved in oxidoreductase activity; peroxisomes, lipid transport, and metabolism; cell wall assembly; and integral components of membranes. Further electron microscopy analysis clarified the important role of changes in the cell membrane and cell wall in the response of mycelia to biological stress. This study clarified the response mechanism of M. sextelata to P. longispora, laying a foundation for further clarifying the infection mechanism of P. longispora.
Collapse
Affiliation(s)
- Shurong Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Jingyi Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tengyun Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Tonglou Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Research Center for Engineering Technology of Edible Fungi, Taigu, Jinzhong 030801, China
| | - Ludan Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Jinzhong 030801, China
| |
Collapse
|
2
|
Wang L, Liu Q, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genomic footprints related with adaptation and fumonisins production in Fusarium proliferatum. Front Microbiol 2022; 13:1004454. [PMID: 36212817 PMCID: PMC9532532 DOI: 10.3389/fmicb.2022.1004454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.
Collapse
|
3
|
Jiang H, Zhang Y, Wang W, Cao X, Xu H, Liu H, Qi J, Jiang C, Wang C. FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum. Int J Mol Sci 2022; 23:10445. [PMID: 36142356 PMCID: PMC9499528 DOI: 10.3390/ijms231810445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3'UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
4
|
Tanaka M, Ito K, Matsuura T, Kawarasaki Y, Gomi K. Identification and distinct regulation of three di/tripeptide transporters in Aspergillus oryzae. Biosci Biotechnol Biochem 2020; 85:452-463. [DOI: 10.1093/bbb/zbaa030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
ABSTRACT
The uptake of di/tripeptides is mediated by the proton-dependent oligopeptide transporter (POT) family. In this study, 3 POT family transporters, designated PotA, PotB, and PotC were identified in Aspergillus oryzae. Growth comparison of deletion mutants of these transporter genes suggested that PotB and PotC are responsible for di/tripeptide uptake. PotA, which had the highest sequence similarity to yeast POT (Ptr2), contributed little to the uptake. Nitrogen starvation induced potB and potC expression, but not potA expression. When 3 dipeptides were provided as nitrogen sources, the expression profiles of these genes were different. PrtR, a transcription factor that regulates proteolytic genes, was involved in regulation of potA and potB but not in potC expression. Only potC expression levels were dramatically reduced by disruption of ubrA, an orthologue of yeast ubiquitin ligase UBR1 responsible for PTR2 expression. Expression of individual POT genes is apparently controlled by different regulatory mechanisms.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Keisuke Ito
- Laboratory of Food Chemistry, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Tomomi Matsuura
- Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yasuaki Kawarasaki
- Biomolecular Engineering Laboratory, School of Food and Nutritional Science, University of Shizuoka, Suruga-ku, Shizuoka, Japan
| | - Katsuya Gomi
- Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
- Laboratory of Fermentation Microbiology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan
| |
Collapse
|
5
|
Commercial Biocontrol Agents Reveal Contrasting Comportments Against Two Mycotoxigenic Fungi in Cereals: Fusarium Graminearum and Fusarium Verticillioides. Toxins (Basel) 2020; 12:toxins12030152. [PMID: 32121314 PMCID: PMC7150872 DOI: 10.3390/toxins12030152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to investigate the impact of commercialized biological control agents (BCAs) against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides, which are trichothecene and fumonisin producers, respectively. With these objectives in mind, three commercial BCAs were selected with contrasting uses and microorganism types (T. asperellum, S. griseoviridis, P. oligandrum) and a culture medium was identified to develop an optimized dual culture bioassay method. Their comportment was examined in dual culture bioassay in vitro with both fusaria to determine growth and mycotoxin production kinetics. Antagonist activity and variable levels or patterns of mycotoxinogenesis inhibition were observed depending on the microorganism type of BCA or on the culture conditions (e.g., different nutritional sources), suggesting that contrasting biocontrol mechanisms are involved. S. griseoviridis leads to a growth inhibition zone where the pathogen mycelium structure is altered, suggesting the diffusion of antimicrobial compounds. In contrast, T. asperellum and P. oligandrum are able to grow faster than the pathogen. T. asperellum showed the capacity to degrade pathogenic mycelia, involving chitinolytic activities. In dual culture bioassay with F. graminearum, this BCA reduced the growth and mycotoxin concentration by 48% and 72%, respectively, and by 78% and 72% in dual culture bioassay against F. verticillioides. P. oligandrum progressed over the pathogen colony, suggesting a close type of interaction such as mycoparasitism, as confirmed by microscopic observation. In dual culture bioassay with F. graminearum, P. oligandrum reduced the growth and mycotoxin concentration by 79% and 93%, respectively. In the dual culture bioassay with F. verticillioides, P. oligandrum reduced the growth and mycotoxin concentration by 49% and 56%, respectively. In vitro dual culture bioassay with different culture media as well as the nutritional phenotyping of different microorganisms made it possible to explore the path of nutritional competition in order to explain part of the observed inhibition by BCAs.
Collapse
|
6
|
Xie XL, Wei Y, Song YY, Pan GM, Chen LN, Wang G, Zhang SH. Genetic Analysis of Four Sexual Differentiation Process Proteins (isp4/SDPs) in Chaetomium thermophilum and Thermomyces lanuginosus Reveals Their Distinct Roles in Development. Front Microbiol 2020; 10:2994. [PMID: 31969873 PMCID: PMC6956688 DOI: 10.3389/fmicb.2019.02994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022] Open
Abstract
Fungal sexual development requires the involvement of a large number of functional genes. Fungal genes encoding sexual differentiation process proteins (SDPs), isps, have been known for decades. isp4/SDP and its homologs function as oligopeptide transporters (OPTs), yet their roles in reproduction are unknown. Here, we genetically analyzed all four isp4/SDP homologs in the sexual species Chaetomium thermophilum and asexual species Thermomyces lanuginosus. Using single gene deletion mutants, we found that T. lanuginosus SDP (TlSDP) participated in asexual sporulation, whereas the other homologs participated in sexual morphogenesis. In complementary tests, C. thermophilum SDPs (CtSDP1-3) restored sporulation defects in TlSDP deletion strains (ΔTlSDP), and their translated proteins, which were localized onto the cytomembrane, possessed OPT activity. Interestingly, CtSDP2 accumulated at the top of the hyphae played a distinct role in determining the sexual cycle, glutathione transport, and lifespan shortening. A unique 72nt-insertion fragment (72INS) was discovered in CtSDP2. Biological analysis of the 72INS deletion and DsRED-tagged fusion strains implied the involvement of 72INS in fungal growth and development. In contrast to TlSDP, which only contributes to conidial production, the three CtSDPs play important roles in sexual and asexual reproduction, and CtSDP2 harbors a unique functional 72INS that initiates sexual morphogenesis.
Collapse
Affiliation(s)
- Xiang-Li Xie
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yan-Yue Song
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guan-Ming Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Li-Na Chen
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
7
|
Maeda K, Ichikawa H, Nakajima Y, Motoyama T, Ohsato S, Kanamaru K, Kobayashi T, Nishiuchi T, Osada H, Kimura M. Identification and Characterization of Small Molecule Compounds That Modulate Trichothecene Production by Fusarium graminearum. ACS Chem Biol 2018; 13:1260-1269. [PMID: 29565558 DOI: 10.1021/acschembio.8b00044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the RIKEN Natural Products Depository (NPDepo) chemical library, we identified small molecules that alter trichothecene 15-acetyldeoxynivalenol (15-ADON) production by Fusarium graminearum. Among trichothecene production activators, a furanocoumarin NPD12671 showed the strongest stimulatory activity on 15-ADON production by the fungus cultured in a 24-well plate. NPD12671 significantly increased the transcription of Tri6, a transcription factor gene necessary for trichothecene biosynthesis, in both trichothecene-inducing and noninducing culture conditions. Dihydroartemisinin (DHA) was identified as the most effective inhibitor of trichothecene production in 24-well plate culture; DHA inhibited trichothecene production (>50% inhibition at 1 μM) without affecting fungal mass by suppressing Tri6 expression. To determine the effect of DHA on trichothecene pathway Tri gene expression, we generated a constitutively Tri6-overexpressing strain that produced 15-ADON in YG_60 medium in Erlenmeyer flasks, conditions under which no trichothecenes are produced by the wild-type. While 5 μM DHA failed to inhibit trichothecene biosynthesis by the overexpressor in trichothecene-inducing YS_60 culture, trichothecene production was suppressed in the YG_60 culture. Regardless of a high Tri6 transcript level in the constitutive overexpressor, the YG_60 culture showed reduced accumulation of Tri5 and Tri4 mRNA upon treatment with 5 μM DHA. Deletion mutants of FgOs2 were also generated and examined; both NPD12671 and DHA modulated trichothecene production as they did in the wild-type strain. These results are discussed in light of the mode of actions of these chemicals on trichothecene biosynthesis.
Collapse
Affiliation(s)
- Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Hinayo Ichikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuichi Ohsato
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Kyoko Kanamaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuo Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takumi Nishiuchi
- Advanced Science Research Centre, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
8
|
Lysøe E, Dees MW, Brurberg MB. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:646-655. [PMID: 28585451 DOI: 10.1094/mpmi-03-17-0062-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.
Collapse
Affiliation(s)
- Erik Lysøe
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
| | - Merete W Dees
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
| | - May Bente Brurberg
- 1 Norwegian Institute of Bioeconomy Research, Division of Biotechnology and Plant Health, Høgskoleveien 7, 1430 Ås, Norway; and
- 2 Norwegian University of Life Sciences, Department of Plant Sciences, 1432 Ås, Norway
| |
Collapse
|