1
|
Research Status and Application Prospects of the Medicinal Mushroom Armillaria mellea. Appl Biochem Biotechnol 2022; 195:3491-3507. [PMID: 36417110 DOI: 10.1007/s12010-022-04240-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
Armillaria is one of the most common diseases underlying chronic root rot in woody plants. Although there is no particularly effective way to prevent it, soil disinfection is a common effective protective measure. However, Armillaria itself has important medicinal value and is a symbiotic fungus in the cultivation of Gastrodia elata and Polyporus umbellatus. Therefore, researching Armillaria is of great practical significance. In this review, the biological characteristics, cultivation methods, chemical components, food and medicinal value and efficacy of Armillaria were all reviewed, and its development and utilization direction were analyzed and discussed.
Collapse
|
2
|
Kedves O, Shahab D, Champramary S, Chen L, Indic B, Bóka B, Nagy VD, Vágvölgyi C, Kredics L, Sipos G. Epidemiology, Biotic Interactions and Biological Control of Armillarioids in the Northern Hemisphere. Pathogens 2021; 10:pathogens10010076. [PMID: 33467216 PMCID: PMC7830283 DOI: 10.3390/pathogens10010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Armillarioids, including the genera Armillaria, Desarmillaria and Guyanagaster, represent white-rot specific fungal saprotrophs with soilborne pathogenic potentials on woody hosts. They propagate in the soil by root-like rhizomorphs, connecting between susceptible root sections of their hosts, and often forming extended colonies in native forests. Pathogenic abilities of Armillaria and Desarmillaria genets can readily manifest in compromised hosts, or hosts with full vigour can be invaded by virulent mycelia when exposed to a larger number of newly formed genets. Armillaria root rot-related symptoms are indicators of ecological imbalances in native forests and plantations at the rhizosphere levels, often related to abiotic environmental threats, and most likely unfavourable changes in the microbiome compositions in the interactive zone of the roots. The less-studied biotic impacts that contribute to armillarioid host infection include fungi and insects, as well as forest conditions. On the other hand, negative biotic impactors, like bacterial communities, antagonistic fungi, nematodes and plant-derived substances may find applications in the environment-friendly, biological control of armillarioid root diseases, which can be used instead of, or in combination with the classical, but frequently problematic silvicultural and chemical control measures.
Collapse
Affiliation(s)
- Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Danish Shahab
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Simang Champramary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Liqiong Chen
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Boris Indic
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
| | - Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (O.K.); (D.S.); (S.C.); (L.C.); (B.B.); (V.D.N.); (C.V.)
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky str. 4., H-9400 Sopron, Hungary;
- Correspondence: (L.K.); (G.S.); Tel.: +36-62-544516 (L.K.); +36-99-518769 (G.S.)
| |
Collapse
|