1
|
Dauphin B, de Freitas Pereira M, Kohler A, Grigoriev IV, Barry K, Na H, Amirebrahimi M, Lipzen A, Martin F, Peter M, Croll D. Cryptic genetic structure and copy-number variation in the ubiquitous forest symbiotic fungus Cenococcum geophilum. Environ Microbiol 2021; 23:6536-6556. [PMID: 34472169 PMCID: PMC9293092 DOI: 10.1111/1462-2920.15752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
Ectomycorrhizal (ECM) fungi associated with plants constitute one of the most successful symbiotic interactions in forest ecosystems. ECM support trophic exchanges with host plants and are important factors for the survival and stress resilience of trees. However, ECM clades often harbour morpho-species and cryptic lineages, with weak morphological differentiation. How this relates to intraspecific genome variability and ecological functioning is poorly known. Here, we analysed 16 European isolates of the ascomycete Cenococcum geophilum, an extremely ubiquitous forest symbiotic fungus with no known sexual or asexual spore-forming structures but with a massively enlarged genome. We carried out whole-genome sequencing to identify single-nucleotide polymorphisms. We found no geographic structure at the European scale but divergent lineages within sampling sites. Evidence for recombination was restricted to specific cryptic lineages. Lineage differentiation was supported by extensive copy-number variation. Finally, we confirmed heterothallism with a single MAT1 idiomorph per genome. Synteny analyses of the MAT1 locus revealed substantial rearrangements and a pseudogene of the opposite MAT1 idiomorph. Our study provides the first evidence for substantial genome-wide structural variation, lineage-specific recombination and low continent-wide genetic differentiation in C. geophilum. Our study provides a foundation for targeted analyses of intra-specific functional variation in this major symbiosis.
Collapse
Affiliation(s)
| | - Maíra de Freitas Pereira
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.,INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Annegret Kohler
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Igor V Grigoriev
- Department of Plant and Microbial Biology, University of California, Berkeley, USA.,U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Hyunsoo Na
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Francis Martin
- INRAE, UMR 1136 INRAE-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE-Grand Est, Champenoux, France
| | - Martina Peter
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
2
|
van der Nest MA, Chávez R, De Vos L, Duong TA, Gil-Durán C, Ferreira MA, Lane FA, Levicán G, Santana QC, Steenkamp ET, Suzuki H, Tello M, Rakoma JR, Vaca I, Valdés N, Wilken PM, Wingfield MJ, Wingfield BD. IMA genome - F14 : Draft genome sequences of Penicillium roqueforti, Fusarium sororula, Chrysoporthe puriensis, and Chalaropsis populi. IMA Fungus 2021; 12:5. [PMID: 33673862 PMCID: PMC7934431 DOI: 10.1186/s43008-021-00055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented. Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both the pathogenicity and biotechnological potential of these species.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, Pretoria, 0110, South Africa
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Maria Alves Ferreira
- Department of Plant Pathology, Universidade Federal de Lavras/UFLA, Lavras, MG, 37200-000, Brazil
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Mario Tello
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - Jostina R Rakoma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Natalia Valdés
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
3
|
Krämer D, Lane FA, Steenkamp ET, Wingfield BD, Wilken PM. Unidirectional mating-type switching confers self-fertility to Thielaviopsis cerberus, the only homothallic species in the genus. Fungal Biol 2021; 125:427-434. [PMID: 34024590 DOI: 10.1016/j.funbio.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
Sexual reproduction is ubiquitous in nature, and nowhere is this more so than in the fungi. Heterothallic behaviour is observed when there is a strict requirement of contact between two individuals of opposite mating type for sexual reproduction to occur. In contrast, a homothallic species can complete the entire sexual cycle in isolation, although several genetic mechanisms underpin this self-fertility. These can be inferred by characterising the structure and gene-content of the mating-type locus, which contains genes that are involved in the regulation of sexual reproduction. In this study, the genetic basis of homothallism in Thielaviopsis cerberus was investigated, the only known self-fertile species within this genus. Using genome sequencing and conventional molecular techniques, two versions of the mating-type locus were identified in this species. This is typical of species that have a unidirectional mating-type switching reproductive strategy. The first version was a self-fertile locus that contained four known mating-type genes, while the second was a self-sterile version with a single mating-type gene. The conversion from a self-fertile to a self-sterile locus is likely mediated by a homologous recombination event at two direct repeats present in the self-fertile locus, resulting in the deletion of three mating-type genes and one of the repeats. Both locus versions were present in isolates that were self-fertile, while self-sterility was caused by the presence of only a switched locus. This study provides a clear example of the architectural fluidity in the mating-type loci that is common among even closely related fungal species.
Collapse
Affiliation(s)
- Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa. http://
| |
Collapse
|
4
|
Wilken PM, Aylward J, Chand R, Grewe F, Lane FA, Sinha S, Ametrano C, Distefano I, Divakar PK, Duong TA, Huhndorf S, Kharwar RN, Lumbsch HT, Navathe S, Pérez CA, Ramírez-Berrutti N, Sharma R, Sun Y, Wingfield BD, Wingfield MJ. IMA Genome - F13: Draft genome sequences of Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti. IMA Fungus 2020; 11:19. [PMID: 33014691 PMCID: PMC7513301 DOI: 10.1186/s43008-020-00039-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.
Collapse
Affiliation(s)
- P. Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602 South Africa
| | - Ramesh Chand
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Felix Grewe
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Frances A. Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Shagun Sinha
- Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Claudio Ametrano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Isabel Distefano
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Pradeep K. Divakar
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Sabine Huhndorf
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Ravindra N. Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - H. Thorsten Lumbsch
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004 India
| | - Carlos A. Pérez
- Department of Plant Protection, EEMAC, Facultad de Agronomía, UdelaR, Paysandú, Uruguay
| | | | - Rohit Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, S.P, Pune University, Pune, 411 007 India
| | - Yukun Sun
- Field Museum, Department of Science and Education, Grainger Bioinformatics Center, Chicago, IL USA
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag x20, Hatfield, Pretoria, 0028 South Africa
| |
Collapse
|
5
|
Fourie A, van der Nest MA, de Vos L, Wingfield MJ, Wingfield BD, Barnes I. QTL mapping of mycelial growth and aggressiveness to distinct hosts in Ceratocystis pathogens. Fungal Genet Biol 2019; 131:103242. [PMID: 31212023 DOI: 10.1016/j.fgb.2019.103242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Some species of Ceratocystis display strong host specificity, such as C. fimbriata sensu stricto that is restricted to sweet potato (Ipomoea batatas) as host. In contrast, the closely related C. manginecans, infects Acacia mangium and Mangifera indica but is not pathogenic to I. batatas. Despite the economic importance of these fungi, knowledge regarding the genetic factors that influence their pathogenicity and host specificity is limited. A recent inheritance study, based on an interspecific cross between C. fimbriata and C. manginecans and the resultant 70 F1 progeny, confirmed that traits such as mycelial growth rate, spore production and aggressiveness on A. mangium and I. batatas are regulated by multiple genes. In the present study, a quantitative trait locus (QTL) analysis was performed to determine the genomic loci associated with these traits. All 70 progeny isolates were genotyped with SNP markers and a linkage map was constructed. The map contained 467 SNPs, distributed across nine linkage groups, with a total length of 1203 cm. Using the progeny genotypes and phenotypes, one QTL was identified on the linkage map for mycelial growth rate, one for aggressiveness to A. mangium and two for aggressiveness to I. batatas (P < 0.05). Two candidate genes, likely associated with mycelial growth rate, were identified in the QTL region. The three QTLs associated with aggressiveness to different hosts contained candidate genes involved in protein processing, detoxification and regions with effector genes and high transposable element density. The results provide a foundation for studies considering the function of genes regulating various quantitative traits in Ceratocystis.
Collapse
Affiliation(s)
- Arista Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; Biotechnology Platform, Agricultural Research Council, Private Bag X05, Onderstepoort 0110 0002, South Africa
| | - Lieschen de Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|