1
|
Viñas M, Karlovsky P. A Comprehensive Review of Hypotheses About the Biological Function of Zearalenone, and a New Hypothesis for the Function of Resorcylic and Dihydroxyphenylacetic Macrolactones in Fungi. Toxins (Basel) 2025; 17:226. [PMID: 40423309 DOI: 10.3390/toxins17050226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/28/2025] Open
Abstract
The special metabolite of Fusarium spp. zearalenone (ZEN) exerts estrogenic effects on mammals, stimulates plant growth, stimulates sexual development in fungi, and inhibits fungal growth. These activities inspired hypotheses about the biological function of ZEN. We briefly review the discovery of ZEN and its implications. The main subject of this review is a critical assessment of the hypotheses that ZEN is a fungal hormone, a plant hormone, a virulence factor, or a fungal defense metabolite. Conceptual and technical issues related to testing these hypotheses, such as inadequate analytical methods, confusion of incidental effects with biological functions, and lack of normalization, are illuminated. Based on these considerations, gene knockout experiments, and on the effects of biotic interactions on ZEN synthesis, we argue that ZEN is a defense metabolite protecting Fusarium spp. against mycoparasites and competitors. Similar reasoning and published data suggest that the Fusarium metabolite fusaristatin A fulfils the same function. Fungi produce many macrolactones of resorcylic acid (RALs) and dihydroxyphenylacetic acid (DHPLs) with properties similar to ZEN. Their widespread occurrence, antifungal activity, and further considerations prompt us to hypothesize that the fundamental function of fungal RALs and DHPLs lies in defense and interference competition.
Collapse
Affiliation(s)
- María Viñas
- CIGRAS, University of Costa Rica, San Jose 2060, Costa Rica
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Dhakal U, Kim HS, Toomajian C. The landscape and predicted roles of structural variants in Fusarium graminearum genomes. G3 (BETHESDA, MD.) 2024; 14:jkae065. [PMID: 38546739 DOI: 10.1093/g3journal/jkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/22/2024] [Indexed: 06/06/2024]
Abstract
Structural rearrangements, such as inversions, translocations, duplications, and large insertions and deletions, are large-scale genomic variants that can play an important role in shaping phenotypic variation and in genome adaptation and evolution. We used chromosomal-level assemblies from eight Fusarium graminearum isolates to study structural variants and their role in fungal evolution. We generated the assemblies of four of these genomes after Oxford Nanopore sequencing. A total of 87 inversions, 159 translocations, 245 duplications, 58,489 insertions, and 34,102 deletions were detected. Regions of high recombination rate are associated with structural rearrangements, and a significant proportion of inversions, translocations, and duplications overlap with the repeat content of the genome, suggesting recombination and repeat elements are major factors in the origin of structural rearrangements in F. graminearum. Large insertions and deletions introduce presence-absence polymorphisms for many genes, including secondary metabolite biosynthesis cluster genes and predicted effectors genes. Translocation events were found to be shuffling predicted effector-rich regions of the genomes and are likely contributing to the gain and loss of effectors facilitated by recombination. Breakpoints of some structural rearrangements fall within coding sequences and are likely altering the protein products. Structural rearrangements in F. graminearum thus have an important role to play in shaping pathogen-host interactions and broader evolution through genome reorganization, the introduction of presence-absence polymorphisms, and changing protein products and gene regulation.
Collapse
Affiliation(s)
- Upasana Dhakal
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL 61604, USA
| | | |
Collapse
|
3
|
He T, Li X, Iacovelli R, Hackl T, Haslinger K. Genomic and Metabolomic Analysis of the Endophytic Fungus Fusarium sp. VM-40 Isolated from the Medicinal Plant Vinca minor. J Fungi (Basel) 2023; 9:704. [PMID: 37504693 PMCID: PMC10381429 DOI: 10.3390/jof9070704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The genus Fusarium is well-known to comprise many pathogenic fungi that affect cereal crops worldwide, causing severe damage to agriculture and the economy. In this study, an endophytic fungus designated Fusarium sp. VM-40 was isolated from a healthy specimen of the traditional European medicinal plant Vinca minor. Our morphological characterization and phylogenetic analysis reveal that Fusarium sp. VM-40 is closely related to Fusarium paeoniae, belonging to the F. tricinctum species complex (FTSC), the genomic architecture and secondary metabolite profile of which have not been investigated. Thus, we sequenced the whole genome of Fusarium sp. VM-40 with the new Oxford Nanopore R10.4 flowcells. The assembled genome is 40 Mb in size with a GC content of 47.72%, 15 contigs (≥50,000 bp; N 50~4.3 Mb), and 13,546 protein-coding genes, 691 of which are carbohydrate-active enzyme (CAZyme)-encoding genes. We furthermore predicted a total of 56 biosynthetic gene clusters (BGCs) with antiSMASH, 25 of which showed similarity with known BGCs. In addition, we explored the potential of this fungus to produce secondary metabolites through untargeted metabolomics. Our analyses reveal that this fungus produces structurally diverse secondary metabolites of potential pharmacological relevance (alkaloids, peptides, amides, terpenoids, and quinones). We also employed an epigenetic manipulation method to activate cryptic BGCs, which led to an increased abundance of several known compounds and the identification of several putative new compounds. Taken together, this study provides systematic research on the whole genome sequence, biosynthetic potential, and metabolome of the endophytic fungus Fusarium sp. VM-40.
Collapse
Affiliation(s)
- Ting He
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiao Li
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Riccardo Iacovelli
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thomas Hackl
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
4
|
Kuhnert E, Collemare J. A genomic journey in the secondary metabolite diversity of fungal plant and insect pathogens: from functional to population genomics. Curr Opin Microbiol 2022; 69:102178. [PMID: 35870224 DOI: 10.1016/j.mib.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Fungal pathogens produce a broad array of secondary metabolites (SMs), which allow the fungus to thrive in its natural habitat and gain competitive advantage. Analysis of the genetically encoded blueprints for SM assembly highlighted that only a small portion of the SMs these fungi are capable of producing are known, and even fewer have been investigated for their natural function. Using molecular tools, a lot of progress has been made recently in identifying the blueprint products and linking them to their ecological purpose such as the peptide virulence factor fusaoctaxin A released by Fusarium graminearum during infection of wheat or the F. oxysporum polyketide bikaverin that provides competitive advantage against bacteria in tomato. In addition, population genomics have given particularly important insights into the species-specific plasticity of the SM blueprint arsenal, showcasing the ongoing evolution and adaptation of fungal pathogens. This approach holds promise in inferring roles in pathogenicity of many more fungal SMs.
Collapse
Affiliation(s)
- Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
5
|
Xia H, Chen L, Fan Z, Peng M, Zhao J, Chen W, Li H, Shi Y, Ding S, Li H. Heat Stress Tolerance Gene FpHsp104 Affects Conidiation and Pathogenicity of Fusarium pseudograminearum. Front Microbiol 2021; 12:695535. [PMID: 34394037 PMCID: PMC8355993 DOI: 10.3389/fmicb.2021.695535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein Hsp104, a homolog of the bacterial chaperone ClpB and plant Hsp100, plays an essential part in the response to heat and various chemical agents in Saccharomyces cerevisiae. However, their functions remain largely unknown in plant fungal pathogens. Here, we report the identification and functional characterization of a plausible ortholog of yeast Hsp104 in Fusarium pseudograminearum, which we termed FpHsp104. Deletion mutant of FpHsp104 displayed severe defects in the resistance of heat shock during F. pseudograminearum mycelia and conidia when exposed to extreme heat. We also found that the protein showed dynamic localization to small particles under high temperature. However, no significant differences were detected in osmotic, oxidative, or cell wall stress responses between the wild-type and Δfphsp104 strains. Quantitative real-time PCR analysis showed that FpHsp104 was upregulated in the conidia, and disruption of FpHsp104 gene resulted in defects in conidia production, morphology, and germination. The transcript levels of conidiation-related genes of FpFluG, FpVosA, FpWetA, and FpAbaA were reduced in the Δfphsp104 mutant vs. the wild-type strain, but heat-shocked mRNA splicing repair was not affected in Δfphsp104. Moreover, Δfphsp104 mutant also showed attenuated virulence, but its DON synthesis was normal. These data from the first study of Hsp104 in F. pseudograminearum strongly suggest that FpHsp104 gene is an important element in the heat tolerance, development, and pathogenicity processes of F. pseudograminearum.
Collapse
Affiliation(s)
- Huiqing Xia
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Zhuo Fan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengya Peng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingya Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wenbo Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Haiyang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shengli Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, China
| |
Collapse
|
6
|
Fusaristatins D–F and (7S,8R)-(−)-chlamydospordiol from Fusarium sp. BZCB-CA, an endophyte of Bothriospermum chinense. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nielsen MR, Holzwarth AKR, Brew E, Chrapkova N, Kaniki SEK, Kastaniegaard K, Sørensen T, Westphal KR, Wimmer R, Sondergaard TE, Sørensen JL. A new vector system for targeted integration and overexpression of genes in the crop pathogen Fusarium solani. Fungal Biol Biotechnol 2019; 6:25. [PMID: 31890232 PMCID: PMC6905090 DOI: 10.1186/s40694-019-0089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Besides their ability to produce several interesting bioactive secondary metabolites, members of the Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation. Results To remove this obstacle we here report the development of a reliable system where the vectors are generated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transformants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming from bostrycoidin and javanicin. Conclusion By creating streamlined plasmid construction and fungal transformation systems, we are now able to express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species complex, and is obtainable from Addgene catalog #133094. Graphic abstract
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Emmett Brew
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Natalia Chrapkova
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Kenneth Kastaniegaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Trine Sørensen
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Klaus Ringsborg Westphal
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Reinhard Wimmer
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Teis Esben Sondergaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| |
Collapse
|
8
|
Khudhair M, Kazan K, Thatcher LF, Obanor F, Rusu A, Sørensen JL, Wollenberg RD, McKay A, Giblot-Ducray D, Simpfendorfer S, Aitken E, Gardiner DM. Fusaristatin A production negatively affects the growth and aggressiveness of the wheat pathogen Fusarium pseudograminearum. Fungal Genet Biol 2019; 136:103314. [PMID: 31809785 DOI: 10.1016/j.fgb.2019.103314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022]
Abstract
Fusarium pseudograminearum (Fp), the causative fungal pathogen of the diseases Fusarium crown rot, is an important constraint to cereals production in many countries including Australia. Fp produces a number of secondary metabolites throughout its life cycle. One of these metabolites, the cyclic lipopeptide fusaristatin A, is encoded by a specific gene cluster containing a polyketide synthase and a three-module non-ribosomal peptide synthetase. However, a recent survey of Fp populations across Australia suggests that this cluster may only be present in a subset of isolates from Western Australia (WA). In this study, we screened 319 Fp isolates from WA and 110 Fp isolates from the Australian eastern states of New South Wales, Victoria, Queensland and South Australia to examine the distribution of this gene cluster among Australian Fp populations. The fusaristatin A gene cluster was found to be present in ~50% of Fp isolates from WA but completely absent in Fp isolates from eastern states. To determine its potential function, mutants of the fusaristatin A gene cluster were generated by disrupting the non-ribosomal peptide synthetase and polyketide synthase genes simultaneously in two different parental backgrounds. The mutants showed increased growth rates and were significantly more aggressive than their respective parental strains on wheat in crown rot pathogenicity assays. This suggested that fusaristatin A has a negative effect on fungal development and aggressiveness. The possible reasons for the geographically restricted presence of the fusaristatin A gene cluster and its role in fungal biology are discussed.
Collapse
Affiliation(s)
- Mohammed Khudhair
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia; School of Agriculture and Food Science, University of Queensland, Queensland 4072, Australia.
| | - Kemal Kazan
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Louise F Thatcher
- CSIRO Agriculture and Food, Clunies Ross Street, Black Mountain, 2601 ACT, Australia
| | - Friday Obanor
- Grains Research and Development Corporation, 4 National Circuit, Barton, ACT 2600, Australia
| | - Anca Rusu
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Jens L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Esbjerg 6700, Denmark
| | - Rasmus D Wollenberg
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Alan McKay
- South Australian Research and Development Institute, Primary Industries and Regions South Australia, Hartley Grove, Urrbrae 5064, South Australia, Australia
| | - Danièle Giblot-Ducray
- South Australian Research and Development Institute, Primary Industries and Regions South Australia, Hartley Grove, Urrbrae 5064, South Australia, Australia
| | - Steven Simpfendorfer
- New South Wales Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340, Australia
| | - Elizabeth Aitken
- School of Agriculture and Food Science, University of Queensland, Queensland 4072, Australia
| | - Donald M Gardiner
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| |
Collapse
|
9
|
Tralamazza SM, Rocha LO, Oggenfuss U, Corrêa B, Croll D. Complex Evolutionary Origins of Specialized Metabolite Gene Cluster Diversity among the Plant Pathogenic Fungi of the Fusarium graminearum Species Complex. Genome Biol Evol 2019; 11:3106-3122. [PMID: 31609418 PMCID: PMC6836718 DOI: 10.1093/gbe/evz225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal genomes encode highly organized gene clusters that underlie the production of specialized (or secondary) metabolites. Gene clusters encode key functions to exploit plant hosts or environmental niches. Promiscuous exchange among species and frequent reconfigurations make gene clusters some of the most dynamic elements of fungal genomes. Despite evidence for high diversity in gene cluster content among closely related strains, the microevolutionary processes driving gene cluster gain, loss, and neofunctionalization are largely unknown. We analyzed the Fusarium graminearum species complex (FGSC) composed of plant pathogens producing potent mycotoxins and causing Fusarium head blight on cereals. We de novo assembled genomes of previously uncharacterized FGSC members (two strains of F. austroamericanum, F. cortaderiae, and F. meridionale). Our analyses of 8 species of the FGSC in addition to 15 other Fusarium species identified a pangenome of 54 gene clusters within FGSC. We found that multiple independent losses were a key factor generating extant cluster diversity within the FGSC and the Fusarium genus. We identified a modular gene cluster conserved among distantly related fungi, which was likely reconfigured to encode different functions. We also found strong evidence that a rare cluster in FGSC was gained through an ancient horizontal transfer between bacteria and fungi. Chromosomal rearrangements underlying cluster loss were often complex and were likely facilitated by an enrichment in specific transposable elements. Our findings identify important transitory stages in the birth and death process of specialized metabolism gene clusters among very closely related species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Liliana Oliveira Rocha
- Food Engineering Faculty, Department of Food Science, University of Campinas, Av. Monteiro Lobato, Brazil
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| | - Benedito Corrêa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Switzerland
| |
Collapse
|
10
|
Slot JC, Gluck-Thaler E. Metabolic gene clusters, fungal diversity, and the generation of accessory functions. Curr Opin Genet Dev 2019; 58-59:17-24. [DOI: 10.1016/j.gde.2019.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
|