1
|
Zhang M, Yang S, Li Q, Wang M, Peng L. Screening of pathogenicity-deficient Penicillium italicum mutants established by Agrobacterium tumefaciens-mediated transformation. Mol Genet Genomics 2024; 299:82. [PMID: 39196386 DOI: 10.1007/s00438-024-02171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China
| | - Shuzhen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China.
| | - Qianru Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China
| | - Meng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China
| | - Litao Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. of China.
| |
Collapse
|
2
|
Gan T, An H, Tang M, Chen H. Establishment of RNA Interference Genetic Transformation System and Functional Analysis of FlbA Gene in Leptographium qinlingensis. Int J Mol Sci 2023; 24:13009. [PMID: 37629189 PMCID: PMC10455979 DOI: 10.3390/ijms241613009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Leptographium qinlingensis is a pathogenic fungus of Pinus armandii that is epidemic in the Qinling Mountains. However, an effective gene interference strategy is needed to characterize the pathogenic genes in this fungus on a functional level. Using the RNA silencing vector pSilent-1 as a template, we established an RNA interference genetic transformation system mediated by Agrobacterium tumefaciens GV3101, which is suitable for the gene study for Leptographium qinlingensis by homologous recombination and strain interference system screening. The LqFlbA gene was silenced using the RNA interference approach described above, and the resulting transformants displayed various levels of silencing with a gene silencing effectiveness ranging from 41.8% to 91.4%. The LqFlbA-RNAi mutant displayed altered colony morphology, sluggish mycelium growth, and diminished pathogenicity toward the host P. armandii in comparison to the wild type. The results indicate that this method provides a useful reverse genetic system for studying the gene function of L. qinlingensis, and that LqFlbA plays a crucial role in the growth, development, and pathogenicity of L. qinlingensis.
Collapse
Affiliation(s)
| | | | | | - Hui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (H.A.); (M.T.)
| |
Collapse
|
3
|
Guo Z, Wu H, Peng B, Kang B, Liu L, Luo C, Gu Q. Identifying pathogenicity-related genes in the pathogen Colletotrichum magnum causing watermelon anthracnose disease via T-DNA insertion mutagenesis. Front Microbiol 2023; 14:1220116. [PMID: 37547676 PMCID: PMC10399754 DOI: 10.3389/fmicb.2023.1220116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Fruit rot caused by Colletotrichum magnum is a crucial watermelon disease threatening the production and quality. To understand the pathogenic mechanism of C. magnum, we optimized the Agrobacterium tumefaciens-mediated transformation system (ATMT) for genetic transformation of C. magnum. The transformation efficiency of ATMT was an average of around 245 transformants per 100 million conidia. Southern blot analysis indicated that approximately 75% of the mutants contained a single copy of T-DNA. Pathogenicity test revealed that three mutants completely lost pathogenicity. The T-DNA integration sites (TISs) of three mutants were Identified. In mutant Cm699, the TISs were found in the intron region of the gene, which encoded a protein containing AP-2 complex subunit σ, and simultaneous gene deletions were observed. Two deleted genes encoded the transcription initiation protein SPT3 and a hypothetical protein, respectively. In mutant Cm854, the TISs were found in the 5'-flanking regions of a gene that was similar to the MYO5 encoding Myosin I of Pyricularia oryzae (78%). In mutant Cm1078, the T-DNA was integrated into the exon regions of two adjacent genes. One was 5'-3' exoribonuclease 1 encoding gene while the other encoded a WD-repeat protein retinoblastoma binding protein 4, the homolog of the MSl1 of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Zhen Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huijie Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Peng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoshan Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liming Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaoxi Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qinsheng Gu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Li Y, Gao W, Wang C, Gao M. Distinct distribution patterns and functional potentials of rare and abundant microorganisms between plastisphere and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162413. [PMID: 36842601 DOI: 10.1016/j.scitotenv.2023.162413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The increasing application of plastic film has caused the "white pollution" of farmlands in greenhouses. To date, most studies on the ecology of the plastisphere have focused on the whole microbial community, with few on the rare and abundant taxa, especially in the terrestrial ecosystems. To understand the plastisphere rare and abundant taxa of bacterial and fungal communities, we collected residues of plastic film from plastic-covered soils in the greenhouse. The plastisphere was significantly different from surrounding soils in terms of alpha- and beta-diversities of abundant and rare taxa. Such discrepancies were greater in rare taxa than in abundant taxa. Besides, the enrichment of soil-borne plant pathogenic fungi in the plastisphere implied that plastic film residues can act as vectors for pathogen transmission. In the plastisphere, the stochastic process governed the assemblies of rare taxa, while deterministic assemblies dominated that of abundant taxa. However, in surrounding soils, the stochastic process played a larger role in abundant taxa as compared to rare taxa. The plastisphere showed a network of less complexity, more competitive connections, and more modules compared to surrounding soils, and rare taxa played greater roles than abundant taxa. There existed obvious discrepancies in the microbial functions between surrounding soils and plastisphere, including carbon, sulfur, nitrogen, and phosphorus cycling, and rare taxa contribute large proportions to the above cycling processes. Altogether, the findings advance our understanding of ecological mechanisms of abundant and rare taxa in the plastisphere in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Wenlong Gao
- Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, PR China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Caixia Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Miao Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
5
|
Yuan H, Hou H, Huang T, Zhou Z, Tu H, Wang L. Agrobacterium tumefaciens-mediated transformation of Coniella granati. J Microbiol Methods 2021; 182:106149. [PMID: 33493491 DOI: 10.1016/j.mimet.2021.106149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Pomegranate fruit rot caused by Coniella granati is among the most devastating diseases threatening pomegranate production. The pathogenic mechanism of this pathogen remains largely unknown due to lack of genetic transformation method. Herein, we developed an approach to the Agrobacterium tumefaciens-mediated transformation (ATMT) of C. granati using a plasmid vector encoding the green fluorescent protein (GFP) and hygromycin resistance (Hyg) genes. This approach yielded C. granati transformants that exhibited uniform, stable green fluorescence. We further optimized this ATMT protocol, enabling us to achieve a transformation efficiency of up to 300 transformants per 0.5 cm2 mycelial plug. Together, we thus provide the first report of the stable transformation of C. granati, laying a foundation for future functional studies characterizing this economically important fungal pathogen.
Collapse
Affiliation(s)
- Hongbo Yuan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Hou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tianxiang Huang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zengqiang Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hongtao Tu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| | - Li Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
6
|
Mahyudin MM, Foster GD, Bailey AM. Optimising Agrobacterium-mediated transformation of Corynespora cassiicola to deliver DsRed. J RUBBER RES 2020. [DOI: 10.1007/s42464-020-00044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Thyrostroma carpophilum insertional mutagenesis: A step towards understanding its pathogenicity mechanism. J Microbiol Methods 2020; 171:105885. [PMID: 32147575 DOI: 10.1016/j.mimet.2020.105885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 11/24/2022]
Abstract
Thyrostroma carpophilum, a causal agent of shot hole disease of stone fruits, cause severe loss in economically important fruit crops of Kashmir. Understanding its pathogenesis at molecular level will aid in devising a better management strategy. In this study, we optimized Agrobacterium tumefaciens mediated transformation (ATMT) conditions for T. carpophilum using PBIF2-EGFP construct. Using this protocol, we obtained 328 positive transformants per 104 spores and subsequent sub-culturing of transformants on selective and non-selective media resulted in stable T-DNA integration. Southern blot analysis revealed that most of the transformants embodied single T-DNA integration. Using this method, we obtained a small-scale transformant library (2050 transformants). Among this pool, we tested 1005 transformants for their pathogenicity; out of which 185 showed complete pathogenicity loss, 35 displayed reduced virulence and 785 were pathogenically similar to wild type. Out of this experimental stock, three transformants from each category were randomly selected to dissect the infection assay. The findings deciphered that transformants with complete pathogenicity loss failed to penetrate the host tissue and a few transformants failed to sporulate in laboratory. Transformants from reduced category could not form appressorium and occasionally sporulated. Transformants similar to wild type were morphologically and pathogenically similar to wild type because of un-alteration in their modus operandi. Our work provides a new platform to understand the pathogenicity mechanism of T. carpophilum. The optimized ATMT protocol will help in developing large transformant library that can help to identify the virulence arsenals necessary for the pathogen to cause disease.
Collapse
|