1
|
Li A, Wang W, Guo S, Li C, Wang X, Fei Q. Insight into the role of antioxidant in microbial lignin degradation: Ascorbic acid as a fortifier of lignin-degrading enzymes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:16. [PMID: 39920762 PMCID: PMC11806803 DOI: 10.1186/s13068-025-02614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Microbial-driven lignin depolymerization has emerged as a promising approach for lignin degradation. However, this process is hindered by the limited activity of lignin-degrading enzymes. Antioxidants are crucial for maintaining redox homeostasis in living cells, which can impact the efficiency of enzymes. Ascorbic acid (AA) is well-known for its antioxidant properties, while Trametes versicolor is a commonly used lignin-degrading fungus capable of secreting laccase (Lac) and manganese peroxidase (MnP). Thus, AA was selected as model antioxidant and added into the culture medium of T. versicolor to examine the effect of antioxidants on the activity of lignin-degrading enzymes in the fungus. RESULTS The presence of AA resulted in a 4.9-fold increase in the Lac activity and a 3.9-fold increase in the MnP activity, reaching 10736 U/L and 8659 U/L, respectively. This increase in enzyme activity contributed to a higher lignin degradation rate from 17.5% to 35.2%, consistent with observed morphological changes in the lignin structure. Furthermore, the addition of AA led to a reduction in the molecular weights of lignin and an increase in the content of degradation products with lower molecular weight, indicating more thorough degradation of lignin. Proteomics analysis suggested that the enhancement in enzyme activity was more likely to attributed to the reinforcement of AA on oxidative protein folding and transportation, rather than changes in enzyme expression. CONCLUSIONS The addition of AA enhanced the performance of enzymes responsible for lignin degradation in terms of enzyme activity, degradation rate, lignin structural change, and product mapping. This study offers a feasible strategy for enhancing the activity of lignin-degrading enzymes in the fungus and provides insights into the role of antioxidant in microbial lignin degradation.
Collapse
Affiliation(s)
- Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weimin Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023, China
| | - Xinying Wang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Nakazawa T, Kawauchi M, Otsuka Y, Han J, Koshi D, Schiphof K, Ramírez L, Pisabarro AG, Honda Y. Pleurotus ostreatus as a model mushroom in genetics, cell biology, and material sciences. Appl Microbiol Biotechnol 2024; 108:217. [PMID: 38372792 PMCID: PMC10876731 DOI: 10.1007/s00253-024-13034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024]
Abstract
Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Yuitsu Otsuka
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Junxian Han
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Daishiro Koshi
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Kim Schiphof
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Lucía Ramírez
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Antonio G Pisabarro
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarra (UPNA), 31006, Pamplona, Spain
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwake-Cho, Kitashirakawa, Sakyo-Ku, Kyoto, 606-8502, Japan.
| |
Collapse
|