2
|
Persistence of ecologically similar fungi in a restricted floral niche. Antonie van Leeuwenhoek 2022; 115:761-771. [PMID: 35389142 DOI: 10.1007/s10482-022-01732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Fungi in the genera Knoxdaviesia and Sporothrix dominate fungal communities within Protea flowerheads and seed cones (infructescences). Despite apparently similar ecologies, they show strong host recurrence and often occupy the same individual infructescence. Differences in host chemistry explain their host consistency, but the factors that allow co-occupancy of multiple species within individual infructescences are unknown. Sporothrix splendens and K. proteae often grow on different senescent tissue types within infructescences of their P. repens host, indicating that substrate-related differences aid their co-occupancy. Sporothrix phasma and K. capensis grow on the same tissues of P. neriifolia suggesting neutral competitive abilities. Here we test the hypothesis that differences in host-tissues dictate competitive abilities of these fungi and explain their co-occupancy of this spatially restricted niche. Media were prepared from infructescence bases, bracts, seeds, or pollen presenters of P. neriifolia and P. repens. As expected, K. capensis was unable to grow on seeds whilst S. phasma could. As hypothesised, K. capensis and S. phasma had equal competitive abilities on pollen presenters, appearing to explain their co-occupancy of this resource. Growth of K. proteae was significantly enhanced on pollen presenters while that of S. splendens was the same as the control. Knoxdavesia proteae grew significantly faster than S. splendens on all tissue types. Despite this, S. splendens was a superior competitor on all tissue types. For K. proteae to co-occupy infructescences with S. splendens for extended periods, it likely needs to colonize pollen presenters before the arrival of S. splendens.
Collapse
|
4
|
Interplay between differential competition and actions of spore-vectors explain host exclusivity of saprobic fungi in Protea flowers. Antonie Van Leeuwenhoek 2020; 113:2187-2200. [PMID: 33221982 DOI: 10.1007/s10482-020-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/21/2020] [Indexed: 10/22/2022]
Abstract
Protea flowers host saprobic Knoxdaviesia and Sporothrix fungi that are dispersed by pollinating insects and birds. Different Protea species contain sympatric populations of different fungal species. For example, P. repens host S. splendens and K. proteae, while P. neriifolia host K. capensis and S. phasma. Even though all fungi can grow vigorously on alternative hosts and they share the same spore vector species, they rarely colonise alternative hosts. We investigated the role of fungal differential competitive abilities on their usual and alternative hosts to explain their host exclusivity. In a de Wit replacement series experiment, S. splendens outcompeted and later overgrew all other fungi on media prepared from its usual and alternative hosts. Host exclusivity of S. splendens on P. repens may therefore be maintained by restricted movement of spore vectors rather than weaker competitive abilities on alternative hosts. On their preferred hosts, S. splendens and S. phasma rapidly overgrew Knoxdavesia species with which they do not usually share a host, explaining host exclusivity of the Knoxdavesia species. Knoxdaviesia proteae likely only persist on P. repens with sympatric S. splendens if it colonizes flowers earlier, in a different area, or completes its life cycle before being overgrown. On their usual P. neriifolia host, K. capensis and S. phasma had neutralistic interactions and S. phasma could not overgrow K. capensis, explaining their co-existence. Host exclusivity of saprobic Protea-associated Knoxdaviesia and Sporothrix may therefore be maintained by both the activities of spore vectors and differential competitive abilities on different hosts, but the influence of other competing microbes and micro-niche differentiation cannot be excluded.
Collapse
|
5
|
van der Nest MA, Steenkamp ET, Roodt D, Soal NC, Palmer M, Chan WY, Wilken PM, Duong TA, Naidoo K, Santana QC, Trollip C, De Vos L, van Wyk S, McTaggart AR, Wingfield MJ, Wingfield BD. Genomic analysis of the aggressive tree pathogen Ceratocystis albifundus. Fungal Biol 2019; 123:351-363. [PMID: 31053324 DOI: 10.1016/j.funbio.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
The overall goal of this study was to determine whether the genome of an important plant pathogen in Africa, Ceratocystis albifundus, is structured into subgenomic compartments, and if so, to establish how these compartments are distributed across the genome. For this purpose, the publicly available genome of C. albifundus was complemented with the genome sequences for four additional isolates using the Illumina HiSeq platform. In addition, a reference genome for one of the individuals was assembled using both PacBio and Illumina HiSeq technologies. Our results showed a high degree of synteny between the five genomes, although several regions lacked detectable long-range synteny. These regions were associated with the presence of accessory genes, lower genetic similarity, variation in read-map depth, as well as transposable elements and genes associated with host-pathogen interactions (e.g. effectors and CAZymes). Such patterns are regarded as hallmarks of accelerated evolution, particularly of accessory subgenomic compartments in fungal pathogens. Our findings thus showed that the genome of C. albifundus is made-up of core and accessory subgenomic compartments, which is an important step towards characterizing its pangenome. This study also highlights the value of comparative genomics for understanding mechanisms that may underly and influence the biology and evolution of pathogens.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nicole C Soal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Conrad Trollip
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Stephanie van Wyk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Aylward J, Wingfield BD, Dreyer LL, Roets F, Wingfield MJ, Steenkamp ET. Genomic overview of closely related fungi with different Protea host ranges. Fungal Biol 2018; 122:1201-1214. [PMID: 30449358 DOI: 10.1016/j.funbio.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 11/28/2022]
Abstract
Genome comparisons of species with distinctive ecological traits can elucidate genetic divergence that influenced their differentiation. The interaction of a microorganism with its biotic environment is largely regulated by secreted compounds, and these can be predicted from genome sequences. In this study, we considered Knoxdaviesia capensis and Knoxdaviesia proteae, two closely related saprotrophic fungi found exclusively in Protea plants. We investigated their genome structure to compare their potential inter-specific interactions based on gene content. Their genomes displayed macrosynteny and were approximately 10 % repetitive. Both species had fewer secreted proteins than pathogens and other saprotrophs, reflecting their specialized habitat. The bulk of the predicted species-specific and secreted proteins coded for carbohydrate metabolism, with a slightly higher number of unique carbohydrate-degrading proteins in the broad host-range K. capensis. These fungi have few secondary metabolite gene clusters, suggesting minimal competition with other microbes and symbiosis with antibiotic-producing bacteria common in this niche. Secreted proteins associated with detoxification and iron sequestration likely enable these Knoxdaviesia species to tolerate antifungal compounds and compete for resources, facilitating their unusual dominance. This study confirms the genetic cohesion between Protea-associated Knoxdaviesia species and reveals aspects of their ecology that have likely evolved in response to their specialist niche.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Léanne L Dreyer
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|