1
|
Duret M, Wallner A, Buée M, Aziz A. Rhizosphere microbiome assembly, drivers and functions in perennial ligneous plant health. Microbiol Res 2024; 287:127860. [PMID: 39089083 DOI: 10.1016/j.micres.2024.127860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/03/2024]
Abstract
Plants shape and interact continuously with their rhizospheric microbiota, which play a key role in plant health and resilience. However, plant-associated microbial community can be shaped by several factors including plant phenotype and cropping system. Thus, understanding the interplay between microbiome assembly during the onset of plant-pathogen interactions and long-lasting resistance traits in ligneous plants remains a major challenge. To date, such attempts were mainly investigated in herbaceous plants, due to their phenotypic characteristics and their short life cycle. However, only few studies have focused on the microbial structure, dynamic and their drivers in perennial ligneous plants. Ligneous plants coevolved in interaction with specific fungal and bacterial communities that differ from those of annual plants. The specificities of such ligneous plants in shaping their own functional microbial communities could be dependent on their high heterozygosis, physiological and molecular status associated to seasonality and their aging processes, root system and above-ground architectures, long-lasting climatic variations, and specific cultural practices. This article provides an overview of the specific characteristics of perennial ligneous plants that are likely to modulate symbiotic interactions in the rhizosphere, thus affecting the plant's fitness and systemic immunity. Plant and microbial traits contributing to the establishment of plant-microbiome interactions and the adaptation of this holobiont are also discussed.
Collapse
Affiliation(s)
- Morgane Duret
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Adrian Wallner
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France
| | - Marc Buée
- Centre INRAE Grand Est-Nancy, UMR Interactions Arbres-Microorganismes, Champenoux 54280, France
| | - Aziz Aziz
- Université de Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, UFR Sciences, Reims 51100, France.
| |
Collapse
|
2
|
Silva PST, Cassiolato AMR, Galindo FS, Jalal A, Nogueira TAR, Oliveira CEDS, Filho MCMT. Azospirillum brasilense and Zinc Rates Effect on Fungal Root Colonization and Yield of Wheat-Maize in Tropical Savannah Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:3154. [PMID: 36432883 PMCID: PMC9694232 DOI: 10.3390/plants11223154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A successful microbial inoculant can increase root colonization and establish a positive interaction with native microorganisms to promote growth and productivity of cereal crops. Zinc (Zn) is an intensively reported deficient nutrient for maize and wheat production in Brazilian Cerrado. It can be sustainably managed by inoculation with plant growth-promoting bacteria and their symbiotic association with other microorganisms such as arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE). The objective of this study was to evaluate the effect of Azospirillum brasilense inoculation and residual Zn rates on root colonization and grain yield of maize and wheat in succession under the tropical conditions of Brazil. These experiments were conducted in a randomized block design with four replications and arranged in a 5 × 2 factorial scheme. The treatments consisted of five Zn rates (0, 2, 4, 6 and 8 kg ha-1) applied from zinc sulfate in maize and residual on wheat and without and with seed inoculation of A. brasilense. The results indicated that root colonization by AMF and DSE in maize-wheat cropping system were significantly increased with interaction of Zn rates and inoculation treatments. Inoculation with A. brasilense at residual Zn rates of 4 kg ha-1 increased root colonization by AMF under maize cultivation. Similarly, inoculation with A. brasilense at residual Zn rates of 2 and 4 kg ha-1 reduced root colonization by DSE under wheat in succession. The leaf chlorophyll index and leaf Zn concentration were increased with inoculation of the A. brasilense and residual Zn rates. The inoculation did not influence AMF spore production and CO2-C in both crops. The grain yield and yield components of maize-wheat were increased with the inoculation of A. brasilense under residual Zn rates of 3 to 4 kg ha-1 in tropical savannah conditions. Inoculation with A. brasilense under residual Zn rates up to 4 kg ha-1 promoted root colonization by AMF and DSE in the maize cropping season. While the inoculation with A. brasilense under 2 and 4 kg ha-1 residual Zn rates reduced root colonization by AMF and DSE in the wheat cropping season. Therefore, inoculation with A. brasilense in combination with Zn fertilization could consider a sustainable approach to increase the yield and performance of the maize-wheat cropping system in the tropical savannah conditions of Brazil.
Collapse
Affiliation(s)
- Philippe Solano Toledo Silva
- Faculty of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal 14884-900, Brazil
| | - Ana Maria Rodrigues Cassiolato
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University (UNESP), Av. Brasil, 56—Centro, Ilha Solteira 15385-000, Brazil
| | - Fernando Shintate Galindo
- Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Av. Centenário, 303—São Dimas, Piracicaba 13416-000, Brazil
| | - Arshad Jalal
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University (UNESP), Av. Brasil, 56—Centro, Ilha Solteira 15385-000, Brazil
| | - Thiago Assis Rodrigues Nogueira
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University (UNESP), Av. Brasil, 56—Centro, Ilha Solteira 15385-000, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering, and Soils, São Paulo State University (UNESP), Av. Brasil, 56—Centro, Ilha Solteira 15385-000, Brazil
| | | |
Collapse
|
3
|
Gramaje D, Eichmeier A, Spetik M, Carbone MJ, Bujanda R, Vallance J, Rey P. Exploring the Temporal Dynamics of the Fungal Microbiome in Rootstocks, the Lesser-Known Half of the Grapevine Crop. J Fungi (Basel) 2022; 8:jof8050421. [PMID: 35628677 PMCID: PMC9144578 DOI: 10.3390/jof8050421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Rootstocks are the link between the soil and scion in grapevines, can provide tolerance to abiotic and biotic stresses, and regulate yield and grape quality. The vascular system of grapevine rootstocks in nurseries is still an underexplored niche for research, despite its potential for hosting beneficial and pathogenic microorganisms. The purpose of this study was to investigate the changes in the composition of fungal communities in 110 Richter and 41 Berlandieri rootstocks at four stages of the grapevine propagation process. Taxonomic analysis revealed that the fungal community predominantly consisted of phylum Ascomycota in all stages of the propagation process. The alpha-diversity of fungal communities differed among sampling times for both rootstocks, with richness and fungal diversity in the vascular system decreasing through the propagation process. The core microbiome was composed of the genera Cadophora, Cladosporium, Penicillium and Alternaria in both rootstocks, while the pathogenic genus Neofusicoccum was identified as a persistent taxon throughout the propagation process. FUNguild analysis showed that the relative abundance of plant pathogens associated with trunk diseases increased towards the last stage in nurseries. Fungal communities in the vascular system of grapevine rootstocks differed between the different stages of the propagation process in nurseries. Numerous genera associated with potential biocontrol activity and grapevine trunk diseases were identified. Understanding the large diversity of fungi in the rootstock vascular tissue and the interactions between fungal microbiota and grapevine will help to develop sustainable strategies for grapevine protection.
Collapse
Affiliation(s)
- David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain;
- Correspondence:
| | - Aleš Eichmeier
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (A.E.); (M.S.)
| | - Milan Spetik
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valticka 334, 69144 Lednice, Czech Republic; (A.E.); (M.S.)
| | - María Julia Carbone
- Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay;
| | - Rebeca Bujanda
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas, Universidad de la Rioja, Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain;
| | - Jessica Vallance
- Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140 Villenave d’Ornon, France; (J.V.); (P.R.)
- Université de Bordeaux, Bordeaux Sciences Agro, UMR 1065 SAVE, 33175 Gradignan, France
| | - Patrice Rey
- Bordeaux Sciences Agro, INRAE, ISVV, SAVE, 33140 Villenave d’Ornon, France; (J.V.); (P.R.)
- Université de Bordeaux, Bordeaux Sciences Agro, UMR 1065 SAVE, 33175 Gradignan, France
- Institut des Sciences Analytiques et de Physicochimie pour l‘Environnement et les Matériaux—UMR 5254, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IBEAS Avenue de l’Université, 64013 Pau, France
| |
Collapse
|
4
|
Mofini MT, Diedhiou AG, Simonin M, Dondjou DT, Pignoly S, Ndiaye C, Min D, Vigouroux Y, Laplaze L, Kane A. Cultivated and wild pearl millet display contrasting patterns of abundance and co-occurrence in their root mycobiome. Sci Rep 2022; 12:207. [PMID: 34997057 PMCID: PMC8741948 DOI: 10.1038/s41598-021-04097-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Fungal communities associated with roots play a key role in nutrient uptake and in mitigating the abiotic and biotic stress of their host. In this study, we characterized the roots mycobiome of wild and cultivated pearl millet [Pennisetum glaucum (L.) R. Br., synonym: Cenchrus americanus (L.) Morrone] in three agro-ecological areas of Senegal following a rainfall gradient. We hypothesized that wild pearl millet could serve as a reservoir of endophytes for cultivated pearl millet. We therefore analyzed the soil factors influencing fungal community structure and whether cultivated and wild millet shared the same fungal communities. The fungal communities associated with pearl millet were significantly structured according to sites and plant type (wild vs cultivated). Besides, soil pH and phosphorus were the main factors influencing the fungal community structure. We observed a higher fungal diversity in cultivated compared to wild pearl millet. Interestingly, we detected higher relative abundance of putative pathotrophs, especially plant pathogen, in cultivated than in wild millet in semi-arid and semi-humid zones, and higher relative abundance of saprotrophs in wild millet in arid and semi-humid zones. A network analysis based on taxa co-occurrence patterns in the core mycobiome revealed that cultivated millet and wild relatives had dissimilar groups of hub taxa. The identification of the core mycobiome and hub taxa of cultivated and wild pearl millet could be an important step in developing microbiome engineering approaches for more sustainable management practices in pearl millet agroecosystems.
Collapse
Affiliation(s)
- Marie-Thérèse Mofini
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), BP 5005, Dakar Fann, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Abdala G Diedhiou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), BP 5005, Dakar Fann, Senegal.
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal.
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal.
| | - Marie Simonin
- IPME, IRD, Cirad, Université de Montpellier, Montpellier, France
- Université d'Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, 49000, Angers, France
| | - Donald Tchouomo Dondjou
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), BP 5005, Dakar Fann, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal
- Centre d'Etude Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, Sénégal
| | - Sarah Pignoly
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- DIADE, Université de Montpellier, IRD, Cirad, 911 Avenue Agropolis, 34394, Montpellier cedex 5, France
| | - Cheikh Ndiaye
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), BP 5005, Dakar Fann, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Yves Vigouroux
- DIADE, Université de Montpellier, IRD, Cirad, 911 Avenue Agropolis, 34394, Montpellier cedex 5, France
| | - Laurent Laplaze
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal.
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal.
- DIADE, Université de Montpellier, IRD, Cirad, 911 Avenue Agropolis, 34394, Montpellier cedex 5, France.
| | - Aboubacry Kane
- Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), BP 5005, Dakar Fann, Senegal.
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes associés aux Stress Environnementaux (LAPSE), Centre de recherche de Bel-Air, Dakar, Sénégal.
- Laboratoire Commun de Microbiologie (LCM), Centre de Recherche de Bel-Air, Dakar, Sénégal.
- Centre d'Excellence Africain en Agriculture pour la Sécurité Alimentaire et Nutritionnelle (CEA-AGRISAN), UCAD, Dakar, Sénégal.
| |
Collapse
|
5
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Drought Influences Fungal Community Dynamics in the Grapevine Rhizosphere and Root Microbiome. J Fungi (Basel) 2021; 7:jof7090686. [PMID: 34575724 PMCID: PMC8468433 DOI: 10.3390/jof7090686] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Plant roots support complex microbial communities that can influence nutrition, plant growth, and health. In grapevine, little is known about the impact of abiotic stresses on the belowground microbiome. In this study, we examined the drought-induced shifts in fungal composition in the root endosphere, the rhizosphere and bulk soil by internal transcribed spacer (ITS) high-throughput amplicon sequencing (HTAS). We imposed three irrigation regimes (100%, 50%, and 25% of the field capacity) to one-year old grapevine rootstock plants cv. SO4 when plants had developed 2–3 roots. Root endosphere, rhizosphere, and bulk soil samples were collected 6- and 12-months post-plantation. Drought significantly modified the overall fungal composition of all three compartments, with the root endosphere compartment showing the greatest divergence from well-watered control (100%). The overall response of the fungal microbiota associated with black-foot disease (Dactylonectria and “Cylindrocarpon” genera) and the potential biocontrol agent Trichoderma to drought stress was consistent across compartments, namely that their relative abundances were significantly higher at 50–100% than at 25% irrigation regime. We identified a significant enrichment in several fungal genera such as the arbuscular mycorrhizal fungus Funneliformis during drought at 25% watering regime within the roots. Our results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in the restructuring of grapevine root microbial communities, and suggest the possibility that members of the altered grapevine microbiota might contribute to plant survival under extreme environmental conditions.
Collapse
|