Chen J, Wang Q, Sheng Y, Cao G, Yang P, Shan Y, Liao F, Muhammad Z, Bao W, Hu L, Liu R, Cong C, Qiu ZJ. High-Performance WSe
2 Photodetector Based on a Laser-Induced p-n Junction.
ACS APPLIED MATERIALS & INTERFACES 2019;
11:43330-43336. [PMID:
31659890 DOI:
10.1021/acsami.9b13948]
[Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional heterojunctions exhibit many unique features in nanoelectronic and optoelectronic devices. However, heterojunction engineering requires a complicated alignment process and some defects are inevitably introduced during material preparation. In this work, a laser scanning technique is used to construct a lateral WSe2 p-n junction. The laser-scanned region shows p-type behavior, and the adjacent region is electrically n-doped with a proper gate voltage. The laser-oxidized product WOx is found to be responsible for this p-type doping. After laser scanning, WSe2 displays a change from ambipolar to unipolar p-type property. A significant photocurrent emerges at the p-n junction. Therefore, a self-powered WSe2 photodetector can be fabricated based on this junction, which presents a large photoswitching ratio of 106, a high photoresponsivity of 800 mA W-1, and a short photoresponse time with long-term stability and reproducibility. Therefore, this selective laser-doping method is prospective in future electronic applications.
Collapse