1
|
Kratzer AL, Rao RP, Chang AH, Khuu A, Araújo VLD, Santos TRT, Lewis CL. Increased ankle pushoff alters frontal-plane hip and knee mechanics. J Biomech 2025; 183:112623. [PMID: 40107188 PMCID: PMC12021298 DOI: 10.1016/j.jbiomech.2025.112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
In a simple model of bipedal walking, both a muscle moment at the hip and an impulsive push generated through ankle plantarflexion power gait. There is a biomechanical tradeoff between ankle and hip moments in the sagittal plane. Although ankle pushoff is primarily sagittal, its impact on frontal-plane mechanics, which are related to hip and knee injury risk, remains underexplored. This study aimed to investigate how increased ankle pushoff influences frontal-plane hip and knee moments during level walking. Understanding these effects could guide treatments for individuals with hip or knee symptoms linked to frontal-plane mechanics. Thirty-seven healthy adults walked on an instrumented treadmill under two conditions: Habitual (typical gait) and Push (increased ankle pushoff). Kinematic and kinetic data were collected and normalized for gait cycle and body weight. Statistical parametric mapping and peak value analysis were used to compare differences in internal joint moments and angles between conditions. Increased pushoff was confirmed by greater ankle plantarflexion moments and angular impulse in the Push condition. At the hip, increased pushoff resulted in a greater abduction moment early in stance and a reduced abduction moment and adduction angle late in stance. At the knee, increased pushoff led to a greater abduction moment late in stance. These findings suggest that increasing ankle pushoff during walking has significant effects on hip and knee frontal-plane biomechanics, which may not be beneficial for individuals with conditions influenced by hip and knee abduction moments.
Collapse
Affiliation(s)
- Avery L Kratzer
- Department of Physical Therapy, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA.
| | - Ria P Rao
- Department of Physical Therapy, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA.
| | - Alison H Chang
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Anne Khuu
- Department of Physical Therapy, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA.
| | - Vanessa Lara de Araújo
- Department of Physical Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago Ribeiro Teles Santos
- Faculty of Physical Education and Physical Therapy, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Cara L Lewis
- Department of Physical Therapy, Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
White LT, Malcolm P, Franz JR, Takahashi KZ. The Effect of Shoe Insole Stiffness Modifications on Walking Performance in Older Adults: A Feasibility Study. J Appl Biomech 2025; 41:124-131. [PMID: 39753120 DOI: 10.1123/jab.2024-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 03/21/2025]
Abstract
Shoes or insoles embedded with carbon fiber materials to increase longitudinal stiffness have been shown to enhance running and walking performance in elite runners, and younger adults, respectively. It is unclear, however, if such stiffness modifications can translate to enhanced mobility in older adults who typically walk with greater metabolic cost of transport compared to younger adults. Here, we sought to test whether adding footwear stiffness via carbon fiber insoles could improve walking outcomes (eg, distance traveled and metabolic cost of transport) in older adults during the 6-minute walk test. 20 older adults (10 M/10 F; 75.95 [6.01] y) performed 6-minute walk tests in 3 different shoe/insole stiffnesses (low, medium, and high) and their own footwear (4 total conditions). We also evaluated participants' toe flexor strength and passive foot compliance to identify subject-specific factors that influence performance from added shoe/insole stiffnesses. We found no significant group differences in distance traveled or net metabolic cost of transport (P ≥ .171). However, weaker toe flexors were associated with greater improvement in distance traveled between the medium and low stiffness conditions (P = .033, r = -.478), indicating that individual foot characteristics may help identify potential candidates for interventions involving footwear stiffness modifications.
Collapse
Affiliation(s)
- Logan T White
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Philippe Malcolm
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Kota Z Takahashi
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, The University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Miyazaki T, Kiyama R, Takeshita Y, Shimose D, Araki S, Matsuura H, Uto Y, Nakashima S, Nakai Y, Kawada M. Inertial measurement unit-based real-time feedback gait immediately changes gait parameters in older inpatients: a pilot study. Front Physiol 2024; 15:1384313. [PMID: 39165280 PMCID: PMC11333335 DOI: 10.3389/fphys.2024.1384313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
The effect of gait feedback training for older people remains unclear, and such training methods have not been adapted in clinical settings. This study aimed to examine whether inertial measurement unit (IMU)-based real-time feedback gait for older inpatients immediately changes gait parameters. Seven older inpatients (mean age: 76.0 years) performed three types of 60-s gait trials with real-time feedback in each of the following categories: walking spontaneously (no feedback trial); focused on increasing the ankle plantarflexion angle during late stance (ankle trial); and focused on increasing the leg extension angle, which is defined by the location of the ankle joint relative to the hip joint in the sagittal plane, during late stance (leg trial). Tilt angles and accelerations of the pelvis and lower limb segments were measured using seven IMUs in pre- and post-feedback trials. To examine the immediate effects of IMU-based real-time feedback gait, multiple comparisons of the change in gait parameters were conducted. Real-time feedback increased gait speed, but it did not significantly differ in the control (p = 0.176), ankle (p = 0.237), and leg trials (p = 0.398). Step length was significantly increased after the ankle trial (p = 0.043, r = 0.77: large effect size). Regarding changes in gait kinematics, the leg trial increased leg extension angle compared to the no feedback trial (p = 0.048, r = 0.77: large effect size). IMU-based real-time feedback gait changed gait kinematics immediately, and this suggests the feasibility of a clinical application for overground gait training in older people.
Collapse
Affiliation(s)
- Takasuke Miyazaki
- Department of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryoji Kiyama
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yasufumi Takeshita
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
- Sports Science Area, Department of Mechanical Systems Engineering, Daiichi Institute of Technology, Kagoshima, Japan
| | - Daichi Shimose
- Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
- Department of Rehabilitation, Tarumizu Municipal Medical Center, Tarumizu Central Hospital, Kagoshima, Japan
| | - Sota Araki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Hisanori Matsuura
- Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuki Uto
- Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Shobu Nakashima
- Course of Health Sciences, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuki Nakai
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
- Sports Science Area, Department of Mechanical Systems Engineering, Daiichi Institute of Technology, Kagoshima, Japan
| | - Masayuki Kawada
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
4
|
Nakanowatari T, Hoshi M, Asao A, Sone T, Kamide N, Sakamoto M, Shiba Y. In-Shoe Sensor Measures of Loading Asymmetry during Gait as a Predictor of Frailty Development in Community-Dwelling Older Adults. SENSORS (BASEL, SWITZERLAND) 2024; 24:5054. [PMID: 39124101 PMCID: PMC11314663 DOI: 10.3390/s24155054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Clinical walk tests may not predict the development of frailty in healthy older adults. With advancements in wearable technology, it may be possible to predict the development of frailty using loading asymmetry parameters during clinical walk tests. This prospective cohort study aimed to test the hypothesis that increased limb loading asymmetry predicts frailty risk in community-living older adults. Sixty-three independently ambulant community-living adults aged ≥ 65 years were recruited, and forty-seven subjects completed the ten-month follow-up after baseline. Loading asymmetry index of net and regional (forefoot, midfoot, and rearfoot) plantar forces were collected using force sensing insoles during a 10 m walk test with their maximum speed. Development of frailty was defined if the participant progressed from baseline at least one grading group of frailty at the follow-up period using the Kihon Checklist. Fourteen subjects developed frailty during the follow-up period. Increased risk of frailty was associated with each 1% increase in loading asymmetry of net impulse (Odds ratio 1.153, 95%CI 1.001 to 1.329). Net impulse asymmetry significantly correlated with asymmetry of peak force in midfoot force. These results indicate the feasibility of measuring plantar forces of gait during clinical walking tests and underscore the potential of using load asymmetry as a tool to augment frailty risk assessment in community-dwelling older adults.
Collapse
Affiliation(s)
- Tatsuya Nakanowatari
- Department of Physical Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakae-machi, Fukushima 960-8516, Fukushima, Japan
| | - Masayuki Hoshi
- Department of Physical Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakae-machi, Fukushima 960-8516, Fukushima, Japan
| | - Akihiko Asao
- Department of Occupational Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakae-machi, Fukushima 960-8516, Fukushima, Japan
| | - Toshimasa Sone
- Department of Occupational Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakae-machi, Fukushima 960-8516, Fukushima, Japan
| | - Naoto Kamide
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Miki Sakamoto
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Kanagawa, Japan
| | - Yoshitaka Shiba
- Department of Physical Therapy, Fukushima Medical University School of Health Sciences, 10-6 Sakae-machi, Fukushima 960-8516, Fukushima, Japan
| |
Collapse
|
5
|
Waterval NFJ, Nollet F, Brehm MA. Effect of stiffness-optimized ankle foot orthoses on joint work in adults with neuromuscular diseases is related to severity of push-off deficits. Gait Posture 2024; 111:162-168. [PMID: 38703445 DOI: 10.1016/j.gaitpost.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND People with plantar flexor weakness generate less ankle push-off work during walking, resulting in inefficient proximal joint compensations. To increase push-off work, spring-like ankle foot orthoses (AFOs) can be provided. However, whether and in which patients AFOs increase push-off work and reduce compensatory hip and knee work is unknown. METHODS In 18 people with bilateral plantar flexor weakness, we performed a 3D gait analysis at comfortable walking speed with shoes-only and with AFOs of which the stiffness was optimized. To account for walking speed differences between conditions, we compared relative joint work of the hip, knee and ankle joint. The relationships between relative work generated with shoes-only and changes in joint work with AFO were tested with Pearson correlations. RESULTS No differences in relative ankle, knee and hip work over the gait cycle were found between shoes-only and AFO (p>0.499). Percentage of total ankle work generated during pre-swing increased with the AFO (AFO: 85.3±9.1% vs Shoes: 72.4±27.1%, p=0.026). At the hip, the AFO reduced relative work in pre-swing (AFO: 31.9±7.4% vs Shoes: 34.1±10.4%, p=0.038) and increased in loading response (AFO: 18.0±11.0% vs Shoes: 11.9±9.8%, p=0.022). Ankle work with shoes-only was inversely correlated with an increase in ankle work with AFO (r=-0.839, p<0.001) and this increase correlated with reduction in hip work with AFO (r=-0.650, p=0.004). DISCUSSION Although stiffness-optimized AFOs did not alter the work distribution across the ankle, knee and hip joint compared to shoes-only walking, relative more ankle work was generated during push-off, causing a shift in hip work from pre-swing to loading response. Furthermore, larger ankle push-off deficits when walking with shoes-only were related with an increase in ankle work with AFO and reduction in compensatory hip work, indicating that more severely affected individuals benefit more from the energy storing-and-releasing capacity of AFOs.
Collapse
Affiliation(s)
- N F J Waterval
- Amsterdam UMC location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands.
| | - F Nollet
- Amsterdam UMC location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| | - M A Brehm
- Amsterdam UMC location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Aout T, Begon M, Peyrot N, Caderby T. Société de Biomécanique young investigator award 2022: Effects of applying functional electrical stimulation to ankle plantarflexor muscles on forward propulsion during walking in young healthy adults. J Biomech 2024; 168:112114. [PMID: 38677030 DOI: 10.1016/j.jbiomech.2024.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The triceps surae muscle, composed of the gastrocnemius and soleus muscles, plays a major role in forward propulsion during walking. By generating positive ankle power during the push-off phase, these muscles produce the propulsive force required for forward progression. This study aimed to test the hypothesis that applying functional electrical stimulation (FES) to these muscles (soleus, gastrocnemius or the combination of the two) during the push-off phase would increase the ankle power generation and, consequently, enhance forward propulsion during walking in able-bodied adults. Fifteen young adults walked at their self-selected speed under four conditions: no stimulation, with bilateral stimulation of the soleus, gastrocnemius, and both muscles simultaneously. Muscles were stimulated just below the discomfort threshold during push-off, i.e., from heel-off to toe-off. FES significantly increased ankle power (+22 to 28 % depending on conditions), propulsive force (+15 to 18 %) and forward progression parameters such as walking speed (+14 to 20 %). Furthermore, walking speed was significantly higher (+5%) for combined soleus and gastrocnemius stimulation compared with gastrocnemius stimulation alone, with no further effect on other gait parameters. In conclusion, our results demonstrate that applying FES to the gastrocnemius and soleus, separately or simultaneously during the push-off phase, enhanced ankle power generation and, consequently, forward propulsion during walking in able-bodied adults. Combined stimulation of the soleus and gastrocnemius provided the greatest walking speed enhancement, without affecting other propulsion parameters. These findings could be useful for designing FES-based solutions for improving gait in healthy people with propulsion impairment, such as the elderly.
Collapse
Affiliation(s)
- Thomas Aout
- Laboratoire IRISSE, EA 4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 97430 Le Tampon, Réunion
| | - Mickaël Begon
- Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l'Activité Physique, Université de Montréal, Québec, Canada; Centre de Recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Nicolas Peyrot
- Laboratoire IRISSE, EA 4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 97430 Le Tampon, Réunion; Mouvement - Interactions - Performance, MIP, Le Mans Université, EA 4334, 72000 Le Mans, France
| | - Teddy Caderby
- Laboratoire IRISSE, EA 4075, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion, 97430 Le Tampon, Réunion.
| |
Collapse
|
7
|
Waterval NFJ, van der Krogt MM, Veerkamp K, Geijtenbeek T, Harlaar J, Nollet F, Brehm MA. The interaction between muscle pathophysiology, body mass, walking speed and ankle foot orthosis stiffness on walking energy cost: a predictive simulation study. J Neuroeng Rehabil 2023; 20:117. [PMID: 37679784 PMCID: PMC10483766 DOI: 10.1186/s12984-023-01239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The stiffness of a dorsal leaf AFO that minimizes walking energy cost in people with plantarflexor weakness varies between individuals. Using predictive simulations, we studied the effects of plantarflexor weakness, passive plantarflexor stiffness, body mass, and walking speed on the optimal AFO stiffness for energy cost reduction. METHODS We employed a planar, nine degrees-of-freedom musculoskeletal model, in which for validation maximal strength of the plantar flexors was reduced by 80%. Walking simulations, driven by minimizing a comprehensive cost function of which energy cost was the main contributor, were generated using a reflex-based controller. Simulations of walking without and with an AFO with stiffnesses between 0.9 and 8.7 Nm/degree were generated. After validation against experimental data of 11 people with plantarflexor weakness using the Root-mean-square error (RMSE), we systematically changed plantarflexor weakness (range 40-90% weakness), passive plantarflexor stiffness (range: 20-200% of normal), body mass (+ 30%) and walking speed (range: 0.8-1.2 m/s) in our baseline model to evaluate their effect on the optimal AFO stiffness for energy cost minimization. RESULTS Our simulations had a RMSE < 2 for all lower limb joint kinetics and kinematics except the knee and hip power for walking without AFO. When systematically varying model parameters, more severe plantarflexor weakness, lower passive plantarflexor stiffness, higher body mass and walking speed increased the optimal AFO stiffness for energy cost minimization, with the largest effects for severity of plantarflexor weakness. CONCLUSIONS Our forward simulations demonstrate that in individuals with bilateral plantarflexor the necessary AFO stiffness for walking energy cost minimization is largely affected by severity of plantarflexor weakness, while variation in walking speed, passive muscle stiffness and body mass influence the optimal stiffness to a lesser extent. That gait deviations without AFO are overestimated may have exaggerated the required support of the AFO to minimize walking energy cost. Future research should focus on improving predictive simulations in order to implement personalized predictions in usual care. Trial Registration Nederlands Trial Register 5170. Registration date: May 7th 2015. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=5170.
Collapse
Affiliation(s)
- N. F. J. Waterval
- Amsterdam UMC Location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| | - M. M. van der Krogt
- Amsterdam UMC Location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| | - K. Veerkamp
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, and Advanced Design and Prototyping Technologies Institute (ADAPT), Griffith University, Gold Coast, Australia
| | - T. Geijtenbeek
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - J. Harlaar
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Orthopaedics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F. Nollet
- Amsterdam UMC Location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| | - M. A. Brehm
- Amsterdam UMC Location University of Amsterdam, Rehabilitation Medicine, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation and Development, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kamimoto T, Hosoi Y, Tanamachi K, Yamamoto R, Yamada Y, Teramae T, Noda T, Kaneko F, Tsuji T, Kawakami M. Combined Ankle Robot Training and Robot-assisted Gait Training Improved the Gait Pattern of a Patient with Chronic Traumatic Brain Injury. Prog Rehabil Med 2023; 8:20230024. [PMID: 37593197 PMCID: PMC10427343 DOI: 10.2490/prm.20230024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
Background : Walking disability caused by central nervous system injury often lingers. In the chronic phase, there is great need to improve walking speed and gait, even for patients who walk independently. Robot-assisted gait training (RAGT) has been widely used, but few studies have focused on improving gait patterns, and its effectiveness for motor function has been limited. This report describes the combination of "RAGT to learn the gait pattern" and "ankle robot training to improve motor function" in a patient with chronic stage brain injury. Case : A 34-year-old woman suffered a traumatic brain injury 5 years ago. She had residual right hemiplegia [Fugl-Meyer Assessment-Lower Extremity (FMA-LE): 18 points] and mild sensory impairment, but she walked independently with a short leg brace and a cane. Her comfortable gait speed was 0.57 m/s without an orthosis, and her 6-m walk test distance was 240 m. The Gait Assessment and Intervention Tool (G.A.I.T.) score was 35 points. After hospitalization, ankle robot training was performed daily, with RAGT performed 10 times in total. Post-intervention evaluation performed on Day 28 showed: FMA-LE, 23 points; comfortable walking speed, 0.69 m/s; G.A.I.T., 27 points; and three-dimensional motion analysis showed ankle dorsiflexion improved from 3.22° to 12.59° and knee flexion improved from 1.75° to 16.54° in the swing phase. Discussion : This is one of few studies to have examined the combination of two robots. Combining the features of each robot improved the gait pattern and motor function, even in the chronic phase.
Collapse
Affiliation(s)
- Takayuki Kamimoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuichiro Hosoi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenya Tanamachi
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Rieko Yamamoto
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuka Yamada
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Teramae
- Department of Brain Robot Interface, Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Tomoyuki Noda
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Brain Robot Interface, Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Fuminari Kaneko
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Swaminathan K, Porciuncula F, Park S, Kannan H, Erard J, Wendel N, Baker T, Ellis TD, Awad LN, Walsh CJ. Ankle-targeted exosuit resistance increases paretic propulsion in people post-stroke. J Neuroeng Rehabil 2023; 20:85. [PMID: 37391851 PMCID: PMC10314463 DOI: 10.1186/s12984-023-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Individualized, targeted, and intense training is the hallmark of successful gait rehabilitation in people post-stroke. Specifically, increasing use of the impaired ankle to increase propulsion during the stance phase of gait has been linked to higher walking speeds and symmetry. Conventional progressive resistance training is one method used for individualized and intense rehabilitation, but often fails to target paretic ankle plantarflexion during walking. Wearable assistive robots have successfully assisted ankle-specific mechanisms to increase paretic propulsion in people post-stroke, suggesting their potential to provide targeted resistance to increase propulsion, but this application remains underexamined in this population. This work investigates the effects of targeted stance-phase plantarflexion resistance training with a soft ankle exosuit on propulsion mechanics in people post-stroke. METHODS We conducted this study in nine individuals with chronic stroke and tested the effects of three resistive force magnitudes on peak paretic propulsion, ankle torque, and ankle power while participants walked on a treadmill at their comfortable walking speeds. For each force magnitude, participants walked for 1 min while the exosuit was inactive, 2 min with active resistance, and 1 min with the exosuit inactive, in sequence. We evaluated changes in gait biomechanics during the active resistance and post-resistance sections relative to the initial inactive section. RESULTS Walking with active resistance increased paretic propulsion by more than the minimal detectable change of 0.8 %body weight at all tested force magnitudes, with an average increase of 1.29 ± 0.37 %body weight at the highest force magnitude. This improvement corresponded to changes of 0.13 ± 0.03 N m kg- 1 in peak biological ankle torque and 0.26 ± 0.04 W kg- 1 in peak biological ankle power. Upon removal of resistance, propulsion changes persisted for 30 seconds with an improvement of 1.49 ± 0.58 %body weight after the highest resistance level and without compensatory involvement of the unresisted joints or limb. CONCLUSIONS Targeted exosuit-applied functional resistance of paretic ankle plantarflexors can elicit the latent propulsion reserve in people post-stroke. After-effects observed in propulsion highlight the potential for learning and restoration of propulsion mechanics. Thus, this exosuit-based resistive approach may offer new opportunities for individualized and progressive gait rehabilitation.
Collapse
Affiliation(s)
- Krithika Swaminathan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Franchino Porciuncula
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Sungwoo Park
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Harini Kannan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Julien Erard
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA
| | - Nicholas Wendel
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Teresa Baker
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Terry D Ellis
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Louis N Awad
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, 02215, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
| |
Collapse
|
10
|
Nùñez-Lisboa M, Valero-Breton M, Dewolf AH. Unraveling age-related impairment of the neuromuscular system: exploring biomechanical and neurophysiological perspectives. Front Physiol 2023; 14:1194889. [PMID: 37427405 PMCID: PMC10323685 DOI: 10.3389/fphys.2023.1194889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
With extended life expectancy, the quality of life of elders is a priority. Loss of mobility, increased morbidity and risks of falls have dramatic individual and societal impacts. Here we consider the age-related modifications of gait, from a biomechanical and neurophysiological perspective. Among the many factors of frailty involved (e.g., metabolic, hormonal, immunological), loss of muscle strength and neurodegenerative changes inducing slower muscle contraction may play a key role. We highlight that the impact of the multifactorial age-related changes in the neuromuscular systems results in common features of gait in the immature gait of infants and older adults. Besides, we also consider the reversibility of age-related neuromuscular deterioration by, on the one hand, exercise training, and the other hand, novel techniques such as direct spinal stimulation (tsDCS).
Collapse
Affiliation(s)
- M. Nùñez-Lisboa
- Laboratoire de Biomécanique et Physiologie et la Locomotion, Institute of Neuroscience, Louvain-la-Neuve, Belgium
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - M. Valero-Breton
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - A. H. Dewolf
- Laboratoire de Biomécanique et Physiologie et la Locomotion, Institute of Neuroscience, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Lee SH, Kim J, Lim B, Lee HJ, Kim YH. Exercise with a wearable hip-assist robot improved physical function and walking efficiency in older adults. Sci Rep 2023; 13:7269. [PMID: 37142609 PMCID: PMC10160081 DOI: 10.1038/s41598-023-32335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/26/2023] [Indexed: 05/06/2023] Open
Abstract
Wearable assistive robotics has emerged as a promising technology to supplement or replace motor functions and to retrain people recovering from an injury or living with reduced mobility. We developed delayed output feedback control for a wearable hip-assistive robot, the EX1, to provide gait assistance. Our purpose in this study was to investigate the effects of long-term exercise with EX1 on gait, physical function, and cardiopulmonary metabolic energy efficiency in elderly people. This study used parallel experimental (exercise with EX1) and control groups (exercise without EX1). A total of 60 community-dwelling elderly persons participated in 18 exercise intervention sessions during 6 weeks, and all participants were assessed at 5 time points: before exercise, after 9 exercise sessions, after 18 sessions, and 1 month and 3 months after the last session. The spatiotemporal gait parameters, kinematics, kinetics, and muscle strength of the trunk and lower extremities improved more after exercise with EX1 than in that without EX1. Furthermore, the effort of muscles over the trunk and lower extremities throughout the total gait cycle (100%) significantly decreased after exercise with EX1. The net metabolic energy costs during walking significantly improved, and functional assessment scores improved more in the experimental group than in the control group. Our findings provide evidence supporting the application of EX1 in physical activity and gait exercise is effective to improve age-related declines in gait, physical function, and cardiopulmonary metabolic efficiency among older adults.
Collapse
Affiliation(s)
- Su-Hyun Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jihye Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Bokman Lim
- WIRobotics, Yongin, 16942, Republic of Korea
| | - Hwang-Jae Lee
- Robot Business Team, Samsung Electronics, Suwon, 16677, Republic of Korea.
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea.
- Haeundae Sharing and Happiness Hospital, Pusan, 48101, Republic of Korea.
| |
Collapse
|
12
|
Boyer KA, Hayes KL, Umberger BR, Adamczyk PG, Bean JF, Brach JS, Clark BC, Clark DJ, Ferrucci L, Finley J, Franz JR, Golightly YM, Hortobágyi T, Hunter S, Narici M, Nicklas B, Roberts T, Sawicki G, Simonsick E, Kent JA. Age-related changes in gait biomechanics and their impact on the metabolic cost of walking: Report from a National Institute on Aging workshop. Exp Gerontol 2023; 173:112102. [PMID: 36693530 PMCID: PMC10008437 DOI: 10.1016/j.exger.2023.112102] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.
Collapse
Affiliation(s)
- Katherine A Boyer
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Kate L Hayes
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | | | | | - Jonathan F Bean
- New England GRECC, VA Boston Healthcare System, Boston, MA, USA; Department of PM&R, Harvard Medical School, Boston, MA, USA; Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Jennifer S Brach
- Department of Physical Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute and the Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - David J Clark
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Luigi Ferrucci
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - James Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Yvonne M Golightly
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, USA; Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tibor Hortobágyi
- Hungarian University of Sports Science, Department of Kinesiology, Budapest, Hungary; Institute of Sport Sciences and Physical Education, University of Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary; Center for Human Movement Sciences, University of Groningen Medical Center, Groningen, the Netherlands
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Marco Narici
- Neuromuscular Physiology Laboratory, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Barbara Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, USA
| | - Thomas Roberts
- Department of Ecology and Evolutionary Biology, Brown University, USA
| | - Gregory Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, USA
| | - Eleanor Simonsick
- Intramural Research Program of the National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
13
|
Are Age, Self-Selected Walking Speed, or Propulsion Force Predictors of Gait-Related Changes in Older Adults? J Appl Biomech 2023; 39:99-109. [PMID: 36898389 DOI: 10.1123/jab.2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 03/12/2023]
Abstract
There is limited research that directly compares the effect of reduced speed with reduced propulsive force production (PFP) on age-related gait changes. We aimed to determine how changes in the gait of older adults correlate with age, speed, or peak PFP over a 6-year span. We collected kinematics and kinetics of 17 older subjects at 2 time points. We determined which biomechanical variables changed significantly between visits and used linear regressions to determine whether combinations of self-selected walking speed, peak PFP, and age correlated to changes in these variables. We found a suite of gait-related changes that occurred in the 6-year period, in line with previous aging studies. Of the 10 significant changes, we found 2 with significant regressions. Self-selected walking speed was a significant indicator of step length, not peak PFP or age. Peak PFP was a significant indicator for knee flexion. None of the biomechanical changes were correlated to the chronological age of the subjects. Few gait parameters had a correlation to the independent variables, suggesting that changes in gait mechanics were not solely correlated to peak PFP, speed, and/or age. This study improves understanding of changes in ambulation that lead to age-related gait modifications.
Collapse
|
14
|
Munsch AE, Pietrosimone B, Franz JR. Walking speed does not affect net vastus lateralis fascicle length change on average during weight acceptance. J Biomech 2022; 144:111300. [DOI: 10.1016/j.jbiomech.2022.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
|
15
|
Fujita K, Tsushima Y, Hayashi K, Kawabata K, Sato M, Kobayashi Y. Differences in causes of stiff knee gait in knee extensor activity or ankle kinematics: A cross-sectional study. Gait Posture 2022; 98:187-194. [PMID: 36166956 DOI: 10.1016/j.gaitpost.2022.09.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Stiff knee gait (SKG), a common occurrence after the onset of stroke, is caused by hyperactivity of the rectus femoris during the swing phase. Another cause of SKG is the weakness of push-off in hemiparetic gait. Prior research did not consider the effect of the magnitude of knee extensors in their subjects. RESEARCH QUESTION Does the cause of SKG differ between patients with high and low knee extensor activities during the swing phase? METHODS We examined 38 patients with chronic stroke hemiplegia who presented with SKG. After placing an inertia sensor and an electromyogram, patients walked 10 m at a comfortable speed. All patients were categorized per the sign of the principal component 2 (PC2) as a component with large factor loadings of knee extensors attained from the electromyographic amplitude during the early swing phase of the paretic limb. Then, the kinematic parameters of knee flexion and other gait parameters in each group were compared, and a correlation analysis was performed. RESULTS In the high PC2 group, the timing of peak knee flexion during the swing phase was early, and vastus lateralis activity during the preswing phase negatively correlated with the knee-flexion angle during the swing phase. In the low PC2 group, the angular velocity of ankle plantar flexion at the toe-off was slow, which positively correlated with the knee-flexion angle during the swing phase. SIGNIFICANCE The cause of SKG could be an inappropriate activity of the vastus lateralis rather than the rectus femoris in patients with high knee extensor activity and slow plantar-flexion velocity at toe-off in patients with low knee extensor activity. Not all causes of SKG in patients with hemiplegia are common, and different treatment strategies are needed per the individuality of spastic knee extensor activity.
Collapse
Affiliation(s)
- Kazuki Fujita
- Graduate School of Health Science, Fukui Health Science University, Fukui-city, Fukui, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan
| | - Koji Hayashi
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui-city, Fukui, Japan
| | - Kaori Kawabata
- Graduate School of Health Science, Fukui Health Science University, Fukui-city, Fukui, Japan
| | - Mamiko Sato
- Department of Rehabilitation Medicine, Fukui General Hospital, Fukui-city, Fukui, Japan
| | - Yasutaka Kobayashi
- Graduate School of Health Science, Fukui Health Science University, Fukui-city, Fukui, Japan
| |
Collapse
|
16
|
Pimentel RE, Feldman JN, Lewek MD, Franz JR. Quantifying mechanical and metabolic interdependence between speed and propulsive force during walking. Front Sports Act Living 2022; 4:942498. [PMID: 36157906 PMCID: PMC9500214 DOI: 10.3389/fspor.2022.942498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Walking speed is a useful surrogate for health status across the population. Walking speed appears to be governed in part by interlimb coordination between propulsive (FP) and braking (FB) forces generated during step-to-step transitions and is simultaneously optimized to minimize metabolic cost. Of those forces, FP generated during push-off has received significantly more attention as a contributor to walking performance. Our goal was to first establish empirical relations between FP and walking speed and then to quantify their effects on metabolic cost in young adults. To specifically address any link between FP and walking speed, we used a self-paced treadmill controller and real-time biofeedback to independently prescribe walking speed or FP across a range of condition intensities. Walking with larger and smaller FP led to instinctively faster and slower walking speeds, respectively, with ~80% of variance in walking speed explained by FP. We also found that comparable changes in either FP or walking speed elicited predictable and relatively uniform changes in metabolic cost, together explaining ~53% of the variance in net metabolic power and ~14% of the variance in cost of transport. These results provide empirical data in support of an interdependent relation between FP and walking speed, building confidence that interventions designed to increase FP will translate to improved walking speed. Repeating this protocol in other populations may identify other relations that could inform the time course of gait decline due to age and disease.
Collapse
Affiliation(s)
- Richard E. Pimentel
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jordan N. Feldman
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael D. Lewek
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason R. Franz
- Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Jason R. Franz
| |
Collapse
|
17
|
Kumar KS, Jamsrandorj A, Kim J, Mun KR. Prediction of lower limb kinematics from vision-based system using deep learning approaches. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:177-181. [PMID: 36086538 DOI: 10.1109/embc48229.2022.9871577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The joint angular velocity during daily life exercises is an important clinical outcome for injury risk index, rehabilitation progress monitoring and athlete's performance evaluation. Recently, wearable sensors have been widely used to monitor lower limb kinematics. However, these sensors are difficult and inconvenient to use in daily life. To mitigate these limitations, this study proposes a vision-based system for estimating lower limb joint kinematics using a deep convolution neural network with bi-directional long-short term memory and gated recurrent unit network. The normalized correlation coefficient, and the mean absolute error were computed between the ground truth obtained from the optical motion capture system and estimated joint angular velocities using proposed models. The estimated results show a highest correlation 0.93 in squat and 0.92 in walking on treadmill action. Furthermore, independent model for each joint angular velocity at the hip, knee, and ankle were analyzed and compared. Among the three joint angular velocities, knee joint has a best estimated accuracy (0.96 in squat and 0.96 in walking on the treadmill). The proposed models show higher estimation accuracy under both the lateral and the frontal view regardless of the camera positions and angles. This study proves the applicability of using sensor free vision-based system to monitor the lower limb kinematics during home workouts for healthcare and rehabilitation.
Collapse
|
18
|
Huang H(H, Si J, Brandt A, Li M. Taking Both Sides: Seeking Symbiosis Between Intelligent Prostheses and Human Motor Control during Locomotion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100314. [PMID: 34458654 PMCID: PMC8388605 DOI: 10.1016/j.cobme.2021.100314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Robotic lower-limb prostheses aim to replicate the power-generating capability of biological joints during locomotion to empower individuals with lower-limb loss. However, recent clinical trials have not demonstrated clear advantages of these devices over traditional passive devices. We believe this is partly because the current designs of robotic prothesis controllers and clinical methods for fitting and training individuals to use them do not ensure good coordination between the prosthesis and user. Accordingly, we advocate for new holistic approaches in which human motor control and intelligent prosthesis control function as one system (defined as human-prosthesis symbiosis). We hope engineers and clinicians will work closely to achieve this symbiosis, thereby improving the functionality and acceptance of robotic prostheses and users' quality of life.
Collapse
Affiliation(s)
- He (Helen) Huang
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| | - Jennie Si
- Department of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona, USA, 85281
| | - Andrea Brandt
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| | - Minhan Li
- NC State/UNC Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina, USA, 27695
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA, 27514
| |
Collapse
|
19
|
Kim H, Franz JR. Age-related differences in calf muscle recruitment strategies in the time-frequency domain during walking as a function of task demand. J Appl Physiol (1985) 2021; 131:1348-1360. [PMID: 34473576 DOI: 10.1152/japplphysiol.00262.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the plantar flexors is critical in governing ankle push-off power during walking, which decreases due to age. However, electromyographic (EMG) signal amplitude alone is unable to fully characterize motor unit recruitment during functional activity. Although not yet studied in walking, EMG frequency content may also vary due to age-related differences in muscle morphology and neural signaling. Our purpose was to quantify plantar flexor activation differences in the time-frequency domain between young and older adults during walking across a range of speeds and with and without horizontal aiding and impeding forces. Ten healthy young (24.0 ± 3.4 yr) and older adults (73.7 ± 3.9 yr) walked at three speeds and walked with horizontal aiding and impeding force while muscle activations of soleus (SOL) and gastrocnemius (GAS) were recorded. The EMG signals were decomposed in the time-frequency domain with wavelet transformation. Principal component analyses extracted principal components (PCs) and PC scores. Compared with young adults, we observed that GAS activation in older adults: 1) was lower across all frequency ranges during midstance and in slow to middle frequency ranges during push-off, independent of walking speed and 2) shifted to slower frequencies with earlier timing as walking speed increased. Our results implicate GAS time-frequency content, and its morphological and neural origins, as a potential determinant of hallmark ankle push-off deficits due to aging, particularly at faster walking speeds. Rehabilitation specialists may attempt to restore GAS intensity across all frequency ranges during mid-to-late stance while avoiding disproportionate increases in slower frequencies during early stance.NEW & NOTEWORTHY We use time-frequency analyses of calf muscle activation to quantify age-related differences in motor recruitment in walking. Gastrocnemius activation in older versus young adults was lower across all frequencies during midstance and in slow-to-middle frequencies during push-off, independent of speed, and shifted to slower frequencies with earlier timing as speed increased. Our results implicate gastrocnemius time-frequency content as a potential determinant of hallmark ankle push-off deficits due to aging, particularly at faster speeds.
Collapse
Affiliation(s)
- Hoon Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Renner K, Queen R. Detection of age and gender differences in walking using mobile wearable sensors. Gait Posture 2021; 87:59-64. [PMID: 33892393 DOI: 10.1016/j.gaitpost.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous studies have demonstrated differences in gait speed and ground reaction forces (GRF) based on age as well as sex during lab-based testing. With advancements in wearable technology, it may be possible to assess differences in loading parameters in non-lab settings using portable data collection methods. RESEARCH QUESTION The purpose of this study is to determine if wearable sensors (loadsol®) are valid for assessing peak force, impulse and loading rate (LR) in older adults and determine if the insole can detect sex and age differences in these parameters during walking. METHODS Twenty young (22.2 ± 2.9 years) and 23 older adults (68.1 ± 5.8 years) walked at a self-selected speed on a flat, inclined and declined instrumented treadmill (randomized order). Force data was simultaneously collected from the treadmill (1440 Hz) and insoles (100 Hz) during each condition. To assess validity, an ICC(3,k) and a Bland-Altman plot was generated for each variable and condition in the older adults. To determine age and gender differences, an ANCOVA (covary: walking speed) was completed for each variable. RESULTS All ICCs were greater than 0.88 for vGRF, impulse and loading rate. The Bland-Altman plots report a bias of less than 2% for vGRF, -8 to -15 % for impulse and -5 to 2% for loading rate. The ANCOVA results indicate that the loadsol® has the ability to detect differences between age groups in peak vGRF in the flat, declined and inclined conditions which are in agreement with the differences the force plates detected. Similarly, the loadsol® and force plates agreed with age-based differences in the flat and inclined condition, but the loadsol® missed the declined LR difference. SIGNIFICANCE The ability to collect data in nontraditional settings has the potential to broaden the research questions investigated, explore clinical applications and increase the generalizability.
Collapse
Affiliation(s)
- Kristen Renner
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States; Bone and Joint Institute at Hartford Hospital, Hartford, CT, United States.
| | - Robin Queen
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States; Department of Orthopaedic Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
21
|
Pieper NL, Baudendistel ST, Hass CJ, Diaz GB, Krupenevich RL, Franz JR. The metabolic and mechanical consequences of altered propulsive force generation in walking. J Biomech 2021; 122:110447. [PMID: 33933865 DOI: 10.1016/j.jbiomech.2021.110447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Older adults walk with greater metabolic energy consumption than younger for reasons that are not well understood. We suspect that a distal-to-proximal redistribution of leg muscle demand, from muscles spanning the ankle to those spanning the hip, contributes to greater metabolic energy costs. Recently, we found that when younger adults using biofeedback target smaller than normal peak propulsive forces (FP), they do so via a similar redistribution of leg muscle demand during walking. This alludes to an experimental paradigm that emulates characteristics of elderly gait independent of other age-related changes relevant to metabolic energy cost. Thus, our purpose was to quantify the metabolic and limb- and joint-level mechanical energy costs associated with modulating propulsive forces during walking in younger adults. Walking with larger FP increased net metabolic power by 47% (main effect, p = 0.001), which was accompanied by small by relatively uniform increases in hip, knee, and ankle joint power and which correlated with total joint power (R2 = 0.151, p = 0.019). Walking with smaller FP increased net metabolic power by 58% (main effect, p < 0.001), which was accompanied by higher step frequencies and increased total joint power due to disproportionate increases in hip joint power. Increases in hip joint power when targeting smaller than normal FP accounted for more than 65% of the variance in the measured changes in net metabolic power. Our findings suggest that walking with a diminished push-off exacts a metabolic penalty because of higher step frequencies and more total limb work due to an increased demand on proximal leg muscles.
Collapse
Affiliation(s)
- Noah L Pieper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Sidney T Baudendistel
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Chris J Hass
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Gabriela B Diaz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Rebecca L Krupenevich
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
DiLiberto FE, Haddad SL, Wilson WC, Courtney CA, Sara LK, Vora AM. Total ankle arthroplasty: Strength, pain, and motion. Clin Biomech (Bristol, Avon) 2021; 84:105342. [PMID: 33798842 DOI: 10.1016/j.clinbiomech.2021.105342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND While outcomes such as pain and ankle motion are well researched, information regarding the effect of total ankle arthroplasty on ankle plantarflexion strength is extraordinarily limited. The purpose of this study was to evaluate ankle plantarflexion strength before and after total ankle arthroplasty, and examine the interplay of pain, motion, and strength. METHODS This prospective case-control study included 19 patients with end-stage ankle arthritis who received a total ankle arthroplasty and 19 healthy control participants matched for age, sex, and body mass index. Pain was measured with a numeric pain rating scale. Passive sagittal plane ankle range of motion (°) and isokinetic ankle plantarflexion torque (Nm/kg) at 60 and 120°/s were measured with an instrumented dynamometer. t-tests or non-parametric tests were used to evaluate outcomes across time and between groups. Bivariate correlations were performed to evaluate the interplay of postoperative pain, motion, and torque. FINDINGS Patient pain and motion improved between the preoperative and six-month postoperative time points (d ≥ 0.7). Ankle plantarflexion torque was not different across time (d ≤ 0.5), but was lower than control group values postoperatively (d ≥ 1.4). Significant correlations between pain and motion (r = -0.48), but not torque (-0.11 ≤ r ≤ 0.13), were observed. INTERPRETATION Unchanged following surgery, impairments in muscle performance following total ankle arthroplasty do not appear to be changed by improved pain or motion. These findings provide impetus for postoperative strengthening interventions.
Collapse
Affiliation(s)
- Frank E DiLiberto
- Rosalind Franklin University of Medicine & Science, College of Health Professions, Department of Physical Therapy, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | - Steven L Haddad
- Illinois Bone & Joint Institute, LLC, 720 Florsheim Drive, Libertyville, IL 60048, USA
| | - Walter C Wilson
- Rosalind Franklin University of Medicine & Science, College of Health Professions, Department of Physical Therapy, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | - Carol A Courtney
- Northwestern University, Feinberg School of Medicine, Physical Therapy and Human Movement Sciences, 645 N Michigan Avenue, Chicago, IL 60611, USA.
| | - Lauren K Sara
- Marquette University, College of Health Sciences, Department of Physical Therapy, 1250 W Wisconsin Avenue, Milwaukee, WI 53233, USA.
| | - Anand M Vora
- Illinois Bone & Joint Institute, LLC, 720 Florsheim Drive, Libertyville, IL 60048, USA
| |
Collapse
|
23
|
Pimentel RE, Pieper NL, Clark WH, Franz JR. Muscle metabolic energy costs while modifying propulsive force generation during walking. Comput Methods Biomech Biomed Engin 2021; 24:1552-1565. [PMID: 33749464 DOI: 10.1080/10255842.2021.1900134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We pose that an age-related increase in the metabolic cost of walking arises in part from a redistribution of joint power where muscles spanning the hip compensate for insufficient ankle push-off and smaller peak propulsive forces (FP). Young adults elicit a similar redistribution when walking with smaller FP via biofeedback. We used targeted FP biofeedback and musculoskeletal models to estimate the metabolic costs of operating lower limb muscles in young adults walking across a range of FP. Our simulations support the theory of distal-to-proximal redistribution of joint power as a determinant of increased metabolic cost in older adults during walking.
Collapse
Affiliation(s)
- Richard E Pimentel
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, NC, USA
| | - Noah L Pieper
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, NC, USA
| | - William H Clark
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, UNC Chapel Hill and NC State University, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Dewolf AH, Sylos-Labini F, Cappellini G, Ivanenko Y, Lacquaniti F. Age-related changes in the neuromuscular control of forward and backward locomotion. PLoS One 2021; 16:e0246372. [PMID: 33596223 PMCID: PMC7888655 DOI: 10.1371/journal.pone.0246372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies found significant modification in spatiotemporal parameters of backward walking in healthy older adults, but the age-related changes in the neuromuscular control have been considered to a lesser extent. The present study compared the intersegmental coordination, muscle activity and corresponding modifications of spinal montoneuronal output during both forward and backward walking in young and older adults. Ten older and ten young adults walked forward and backward on a treadmill at different speeds. Gait kinematics and EMG activity of 14 unilateral lower-limb muscles were recorded. As compared to young adults, the older ones used shorter steps, a more in-phase shank and foot motion, and the activity profiles of muscles innervated from the sacral segments were significantly wider in each walking condition. These findings highlight age-related changes in the neuromuscular control of both forward and backward walking. A striking feature of backward walking was the differential organization of the spinal output as compared to forward gait. In addition, the resulting spatiotemporal map patterns also characterized age-related changes of gait. Finally, modifications of the intersegmental coordination with aging were greater during backward walking. On the whole, the assessment of backward walk in addition to routine forward walk may help identifying or unmasking neuromuscular adjustments of gait to aging.
Collapse
Affiliation(s)
- Arthur H. Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| | | | - Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
25
|
Fang Y, Lerner ZF. Feasibility of Augmenting Ankle Exoskeleton Walking Performance With Step Length Biofeedback in Individuals With Cerebral Palsy. IEEE Trans Neural Syst Rehabil Eng 2021; 29:442-449. [PMID: 33523814 PMCID: PMC7968126 DOI: 10.1109/tnsre.2021.3055796] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Most people with cerebral palsy (CP) suffer from impaired walking ability and pathological gait patterns. Seeking to improve the effectiveness of gait training in this patient population, this study developed and assessed the feasibility of a real-time biofeedback mechanism to augment untethered ankle exoskeleton-assisted walking performance in individuals with CP. We selected step length as a clinically-relevant gait performance target and utilized a visual interface with live performance scores. An adaptive ankle exoskeleton control algorithm provided assistance proportional to the real-time ankle moment. We assessed lower-extremity gait mechanics and muscle activity in seven ambulatory individuals with CP as they walked with adaptive ankle assistance alone and with ankle assistance plus step-length biofeedback. We achieved our technical validation goal by demonstrating a strong correlation between estimated step length and real step length (R = 0.771, p < 0.001). We achieved our clinical feasibility goal by demonstrating that biofeedback-plus-assistance resulted in a 14% increase in step length relative to baseline (p ≤ 0.05), while no difference in step length was observed for assistance alone. Additionally, we observed near immediate improvements in lower-extremity posture, moments, and positive power relative to baseline for biofeedback-plus-assistance (p < 0.05), with none, or more-limited improvements observed for assistance alone. Our findings suggest that providing real-time biofeedback and using step length as the target can be effective for increasing the rate at which individuals with CP improve their gait mechanics when walking with wearable ankle assistance.
Collapse
|
26
|
Langeard A, Bigot L, Loggia G, Bherer L, Chastan N, Gauthier A. Ankle dorsiflexors and plantarflexors neuromuscular electrical stimulation training impacts gait kinematics in older adults: A pilot study. Gait Posture 2021; 84:335-339. [PMID: 33450595 DOI: 10.1016/j.gaitpost.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND While ankle muscles, highly affected by aging, are highly implicated in the changes in gait kinematics and involved in the limitation of seniors' mobility, whether neuromuscular electrical stimulation (NMES) training of these muscles could impact gait kinematics in older adults has not been investigated yet. RESEARCH QUESTION What are the effects of 12 weeks of ankle plantar and dorsiflexors NMES training on strength and gait kinematics in healthy older adults? METHODS Fourteen older adults (73.6 ± 4.9 years) performed a three-time per week, three months long NMES training of both ankle plantar and dorsiflexors. Before and after training, neuromuscular parameters, gait kinematic parameters, and daily physical activity were measured. RESULTS The participants significantly increased their lower limb muscle mass and their plantar and dorsiflexors isometric strength after training. They reduced the hip abduction/adduction and the pelvic anterior tilt range of motion and variability during gait. However, the participants became less active after the training. SIGNIFICANCE NMES training of ankle muscles, by increasing ankle muscle mass and strength,modified gait kinematics. NMES training of ankle muscles is feasible and effective to lower the hip implication and increment foot progression angle during gait. Further study should determine if this could lower the risk of falling.
Collapse
Affiliation(s)
| | - Lucile Bigot
- Normandie Univ, UNICAEN, INSERM, COMETE, 14000, Caen, France
| | - Gilles Loggia
- Normandie Univ, UNICAEN, INSERM, CHU Caen, Department of Geriatrics, COMETE, 14000, Caen, France
| | - Louis Bherer
- University of Montréal, Department of Medicine and Research Center Montreal Heart Institute, Montreal, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada; Research Centre, Montreal Heart Institute, Montreal, QC, Canada; Research Centre, Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Nathalie Chastan
- Normandie Univ, UNICAEN, INSERM, CHU Rouen, Department of Neurophysiology, COMETE, 14000, Caen, France
| | | |
Collapse
|
27
|
Bennett KJ, Millar SC, Fraysse F, Arnold JB, Atkins GJ, Solomon LB, Martelli S, Thewlis D. Postoperative lower limb joint kinematics following tibial plateau fracture: A 2-year longitudinal study. Gait Posture 2021; 83:20-25. [PMID: 33069125 DOI: 10.1016/j.gaitpost.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/30/2020] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The goal of postoperative tibial plateau fracture (TPF) management is to ensure surgical fixation is maintained while returning patients to normal function as soon as possible, allowing patients to resume their normal activities of daily living. The aim of this study was to investigate longitudinal changes in lower limb joint kinematics following TPF and determine how these kinematics relate to self-reported function. METHODS Patients presenting with a TPF were recruited (n = 18) and undertook gait analysis at six postoperative time points (two weeks, six weeks, three months, six months, one and two years). Lower limb joint kinematics were assessed at each time point based on gait data. Statistical parametric mapping (SPM) was undertaken to investigate the change in joint kinematic traces with time. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was assessed at each time point to obtain self-reported outcomes. A healthy reference was also analyzed and used for qualitative comparison of joint kinematics. RESULTS AND SIGNIFICANCE Knee kinematics showed improvements with time, however only minor changes were noted after six weeks at the hip, and six months at the knee and ankle relative to two weeks postoperative. SPM identified significant improvements with time in hip (p < 0.001) and knee (p = 0.003) flexion. No significant changes were observed with time at the ankle however, when compared to the healthy reference, participants showed reduced plantarflexion at two years. Lower limb joint ROM showed significant weak to moderate correlation with the ADL sub-scale of the KOOS (hip r = 0.442, knee r = 0.303, ankle r = 0.367). The lack of significant changes with time and overall reduced plantarflexion at the ankle potentially reduces propulsive capacity during gait up to two years postoperative. In this study, we see a deficiency in joint kinematics in TPF patients up to two years when compared to a healthy reference, especially at the ankle.
Collapse
Affiliation(s)
- Kieran J Bennett
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, SA, Australia.
| | - Stuart C Millar
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, SA, Australia; Alliance for Research in Exercise, Nutrition and Activity (AREAN), Sansom Institute for Health Research, University of South Australia, SA, Australia
| | - Francois Fraysse
- Alliance for Research in Exercise, Nutrition and Activity (AREAN), Sansom Institute for Health Research, University of South Australia, SA, Australia
| | - John B Arnold
- Innovation, Implementation and Clinical Translation in Health (IIMPACT), University of South Australia, Adelaide, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, SA, Australia
| | - L Bogdan Solomon
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, SA, Australia; Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Saulo Martelli
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Dominic Thewlis
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, SA, Australia
| |
Collapse
|
28
|
Herrero L, Franz JR, Lewek MD. Gradually learning to increase gait propulsion in young unimpaired adults. Hum Mov Sci 2020; 75:102745. [PMID: 33352375 DOI: 10.1016/j.humov.2020.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
Distorted visual feedback (DVF) may employ both implicit and explicit approaches to enhance motor learning. Our purpose was to test the effect of DVF of gait propulsion on the capacity to alter propulsive forces, and to determine the biomechanical determinants of propulsion. Seventeen young unimpaired individuals walked for three minutes of baseline (no feedback), then completed three randomly ordered, 10-minute Learning conditions: Real, 10DVF, and 20DVF. During the DVF conditions, we gradually decreased the feedback value without the participants' knowledge. For all Learning conditions, participants were instructed to maintain the propulsive force between two targets representing ±1 standard deviation as obtained from baseline. A one-minute retention trial without any feedback was performed immediately after Learning. Participants increased propulsive forces and trailing limb angle in both DVF conditions that persisted through retention; however, no change in ankle plantarflexion moment was noted. These findings offer promise of translation to clinical populations with propulsion deficits and require combined implicit and explicit learning components.
Collapse
Affiliation(s)
- Luciana Herrero
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Michael D Lewek
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
29
|
Hedrick EA, Parker SM, Hsiao H, Knarr BA. Mechanisms used to increase propulsive forces on a treadmill in older adults. J Biomech 2020; 115:110139. [PMID: 33321429 DOI: 10.1016/j.jbiomech.2020.110139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Older adults typically demonstrate reductions in overground walking speeds and propulsive forces compared to young adults. These reductions in walking speeds are risk factors for negative health outcomes. Therefore, this study aimed to determine the effect of an adaptive speed treadmill controller on walking speed and propulsive forces in older adults, including the mechanisms and strategies underlying any change in propulsive force between conditions. Seventeen participants completed two treadmill conditions, one with a fixed comfortable walking speed and one with an adaptive speed controller. The adaptive speed treadmill controller utilized a set of inertial-force, gait parameters, and position-based controllers that respond to an instantaneous anterior inertial force. A biomechanical-based model previously developed for individuals post-stroke was implemented for older adults to determine the primary gait parameters that contributed to the change in propulsive forces when increasing speed. Participants walked at faster average speeds during the adaptive speed controller (1.20 m/s) compared to the fixed speed controller conditions (0.98 m/s); however, these speeds were not as fast as their overground speed (1.44 m/s). Although average trailing limb angle (TLA) (p < 0.001) and ankle moment (p = 0.020) increased when speed also increased between treadmill conditions, increasing TLA contributed more to the increased propulsive forces seen during faster treadmill speeds. Our findings show that older adults chose faster walking speeds and increased propulsive force when walking on an adaptive speed treadmill compared to a fixed speed treadmill, suggesting that an adaptive speed treadmill controller has the potential to be a beneficial alternative to current exercise interventions for older adults.
Collapse
Affiliation(s)
- Erica A Hedrick
- Department of Biomechanics, University of Nebraska at Omaha, NE, United States.
| | - Sheridan M Parker
- Department of Biomechanics, University of Nebraska at Omaha, NE, United States
| | - HaoYuan Hsiao
- Department of Kinesiology and Health Education, University of Texas at Austin, TX, United States
| | - Brian A Knarr
- Department of Biomechanics, University of Nebraska at Omaha, NE, United States
| |
Collapse
|
30
|
Awad LN, Lewek MD, Kesar TM, Franz JR, Bowden MG. These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits. J Neuroeng Rehabil 2020; 17:139. [PMID: 33087137 PMCID: PMC7579929 DOI: 10.1186/s12984-020-00747-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.
Collapse
Affiliation(s)
- Louis N Awad
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA.
| | - Michael D Lewek
- Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Emory University, Atlanta, GA, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Mark G Bowden
- Division of Physical Therapy, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Munsch AE, Pietrosimone B, Franz JR. The effects of knee extensor moment biofeedback on gait biomechanics and quadriceps contractile behavior. PeerJ 2020; 8:e9509. [PMID: 32714665 PMCID: PMC7353917 DOI: 10.7717/peerj.9509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Individuals with knee joint pathologies exhibit quadriceps dysfunction that, during walking, manifests as smaller peak knee extensor moment (pKEM) and reduced knee flexion excursion. These changes persist despite muscle strengthening and may alter stance phase knee joint loading considered relevant to osteoarthritis risk. Novel rehabilitation strategies that more directly augment quadriceps mechanical output during functional movements are needed to reduce this risk. As an important first step, we tested the efficacy of real-time biofeedback during walking to prescribe changes of ±20% and ±40% of normal walking pKEM values in 11 uninjured young adults. We simultaneously recorded knee joint kinematics, ground reaction forces, and, via ultrasound, vastus lateralis (VL) fascicle length change behavior. Participants successfully responded to real-time biofeedback and averaged up to 55% larger and 51% smaller than normal pKEM values with concomitant and potentially favorable changes in knee flexion excursion. While the VL muscle-tendon unit (MTU) lengthened, VL fascicles accommodated weight acceptance during walking largely through isometric, or even slight concentric, rather than eccentric action as is commonly presumed. Targeted pKEM biofeedback may be a useful rehabilitative and/or scientific tool to elicit desirable changes in knee joint biomechanics considered relevant to the development of osteoarthritis.
Collapse
Affiliation(s)
- Amanda E Munsch
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Brian Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| |
Collapse
|
32
|
Revi DA, Alvarez AM, Walsh CJ, De Rossi SMM, Awad LN. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: from healthy to hemiparetic walking. J Neuroeng Rehabil 2020; 17:82. [PMID: 32600348 PMCID: PMC7322880 DOI: 10.1186/s12984-020-00700-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background The anterior-posterior ground reaction force (AP-GRF) and propulsion and braking point metrics derived from the AP-GRF time series are indicators of locomotor function across healthy and neurological diagnostic groups. In this paper, we describe the use of a minimal set of wearable inertial measurement units (IMUs) to indirectly measure the AP-GRFs generated during healthy and hemiparetic walking. Methods Ten healthy individuals and five individuals with chronic post-stroke hemiparesis completed a 6-minute walk test over a walking track instrumented with six forceplates while wearing three IMUs securely attached to the pelvis, thigh, and shank. Subject-specific models driven by IMU-measured thigh and shank angles and an estimate of body acceleration provided by the pelvis IMU were used to generate indirect estimates of the AP-GRF time series. Propulsion and braking point metrics (i.e., peaks, peak timings, and impulses) were extracted from the IMU-generated time series. Peaks and impulses were expressed as % bodyweight (%bw) and peak timing was expressed as % stance phase (%sp). A 75%-25% split of 6-minute walk test data was used to train and validate the models. Indirect estimates of the AP-GRF time series and point metrics were compared to direct measurements made by the forceplates. Results Indirect measurements of the AP-GRF time series approximated the direct measurements made by forceplates, with low error and high consistency in both the healthy (RMSE= 4.5%bw; R2= 0.93) and post-stroke (RMSE= 2.64%bw; R2= 0.90) cohorts. In the healthy cohort, the average errors between indirect and direct measurements of the peak propulsion magnitude, peak propulsion timing, and propulsion impulse point estimates were 2.37%bw, 0.67%sp, and 0.43%bw. In the post-stroke cohort, the average errors for these point estimates were 1.07%bw, 1.27%sp, and 0.31%bw. Average errors for the braking estimates were higher, but comparable. Conclusions Accurate estimates of AP-GRF metrics can be generated using three strategically mounted IMUs and subject-specific calibrations. This study advances the development of point-of-care diagnostic systems that can catalyze the routine assessment and management of propulsion and braking locomotor deficits during rehabilitation.
Collapse
Affiliation(s)
- Dheepak Arumukhom Revi
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA
| | - Andre M Alvarez
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - Conor J Walsh
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.,John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA
| | - Stefano M M De Rossi
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - Louis N Awad
- College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA. .,John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
33
|
Hafer JF, Zernicke RF. Propulsive joint powers track with sensor-derived angular velocity: A potential tool for lab-less gait retraining. J Biomech 2020; 106:109821. [PMID: 32517990 DOI: 10.1016/j.jbiomech.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/02/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Lower propulsive joint powers, particularly at the ankle, are often observed in older compared to young adults. Interventions to increase joint powers often require labs with motion capture and force treadmill technology. Translating these interventions out of the lab requires identifying portable measures that track (i.e., strongly correlate with) changes in joint powers. The purpose of this study was to determine if kinematics collected using inertial measurement units (IMUs) correlate with propulsive joint powers calculated using inverse dynamics. We collected data simultaneously with motion capture, force plates, and IMU sensors as young and older adults walked at varying speeds overground in a laboratory. Hip, knee, and ankle joint powers were calculated using inverse dynamics and positive peaks in the second half of stance were identified as the propulsive powers of interest. Raw IMU gyroscope data were oriented to a functional medial-lateral axis and peaks in the second half of stance were identified for segment (thigh, shank, foot) and joint (hip, knee, ankle) angular velocities. Pearson correlation coefficients were calculated between peak joint powers and peak angular velocities. We identified significant (all p < 0.001) correlations between hip joint power and hip and thigh angular velocities (r = 0.80-0.83) and between ankle joint power and ankle, shank, and foot angular velocities (r = 0.77-0.89). Correlation strength was similar between young and older adults and between segment and joint angular velocities. These results suggest that changes in joint powers longitudinally or over the course of an intervention could be tracked using a minimal set of wearable sensors.
Collapse
Affiliation(s)
- Jocelyn F Hafer
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States; School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
| | - Ronald F Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States; School of Kinesiology, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Waanders JB, Murgia A, Hortobágyi T, DeVita P, Franz JR. How age and surface inclination affect joint moment strategies to accelerate and decelerate individual leg joints during walking. J Biomech 2020; 98:109440. [PMID: 31690458 PMCID: PMC7245140 DOI: 10.1016/j.jbiomech.2019.109440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 11/22/2022]
Abstract
A joint moment also causes motion at other joints of the body. This joint coupling-perspective allows more insight into two age-related phenomena during gait. First, whether increased hip kinetic output compensates for decreased ankle kinetic output during positive joint work. Second, whether preserved joint kinetic patterns during negative joint work in older age have any functional implication. Therefore, we examined how age and surface inclination affect joint moment strategies to accelerate and/or decelerate individual leg joints during walking. Healthy young (age: 22.5 ± 4.1 years, n = 18) and older (age: 76.0 ± 5.7 years, n = 22) adults walked at 1.4 m/s on a split-belt instrumented treadmill at three grades (0%, 10%, -10%). Lower-extremity moment-induced angular accelerations were calculated for the hip (0% and 10%) and knee (0% and -10%) joints. During level and uphill walking, both age groups showed comparable ankle moment-induced ipsilateral (p = 0.774) and contralateral (p = 0.047) hip accelerations, although older adults generated lower ankle moments in late stance. However, ankle moment-induced contralateral hip accelerations were smaller (p = 0.001) in an older adult subgroup (n = 13) who showed larger hip extension moments in early stance than young adults. During level and downhill walking, leg joint moment-induced knee accelerations were unaffected by age (all p > 0.05). These findings suggest that during level and uphill walking increased hip flexor mechanical output in older adults does not arise from reduced ankle moments, contrary to increased hip extensor mechanical output. Additionally, results during level and downhill walking imply that preserved eccentric knee extensor function is important in maintaining knee stabilization in older age.
Collapse
Affiliation(s)
- Jeroen B Waanders
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands.
| | - Alessio Murgia
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, the Netherlands
| | - Paul DeVita
- East Carolina University, Greenville, NC, United States
| | - Jason R Franz
- University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| |
Collapse
|
35
|
Can shank acceleration provide a clinically feasible surrogate for individual limb propulsion during walking? J Biomech 2019; 98:109449. [PMID: 31679756 DOI: 10.1016/j.jbiomech.2019.109449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022]
Abstract
Aging and many pathologies that affect gait are associated with reduced ankle power output and thus trailing limb propulsion during walking. However, quantifying trailing limb propulsion requires sophisticated measurement equipment at significant expense that fundamentally limits clinical translation for diagnostics or gait rehabilitation. As a component of joint power, our purpose was to determine if shank acceleration estimated via accelerometers during push-off can serve as a clinically feasible surrogate for ankle power output and peak anterior ground reaction forces (GRF) during walking. As hypothesized, we found that young adults modulated walking speed via changes in peak anterior GRF and peak ankle power output that correlated with proportional changes in shank acceleration during push-off, both at the individual subject (R2 ≥ 0.80, p < 0.01) and group average (R2 ≥ 0.74, p < 0.01) levels. In addition, we found that unilateral deficits in trailing limb propulsion induced via a leg bracing elicited unilateral and relatively proportional reductions in peak anterior GRF, peak ankle power, and peak shank acceleration. These unilateral leg bracing effects on peak shank acceleration correlated with those in peak ankle power (braced leg: R2 = 0.43, p = 0.028) but those effects in both peak shank acceleration and peak ankle power were disassociated from those in peak anterior GRF. In conclusion, our findings in young adults provide an early benchmark for the development of affordable and clinically feasible alternatives for assessing and monitoring trailing limb propulsion during walking.
Collapse
|
36
|
Stevens WR, Podeszwa DA, Tulchin-Francis K. Compensatory sagittal plane ankle gait mechanics: Are they present in patients with a weak or stiff hip? Gait Posture 2019; 74:250-254. [PMID: 31590046 DOI: 10.1016/j.gaitpost.2019.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Simulations suggest that subjects with reduced hip range of motion (ROM) and/or weakness can achieve more normal walking mechanics through compensations at the ankle. The aims of this study were to assess whether subjects with reduced hip ROM (Stiff hip) or hip flexor weakness (Weak hip) exhibit ankle compensations during walking and investigate redistribution of power in the lower extremity joints. METHODS Retrospective gait data were reviewed (IRB-approved hip registry). Preoperative kinematic/kinetic walking data were collected in patients with: adolescent hip dysplasia (AHD), femoral acetabular impingement (FAI), and Legg-Calvé Perthes disease (Perthes). AHD patients with significantly weak hip flexors on their affected side were included (Weak hip group). The Gait Profile Score (GPS) was calculated on the affected side of the FAI and Perthes groups to identify patients who had a Stiff hip. Patients who had undergone a hip arthrodesis (Fusion) were also included (Stiff hip group). Ankle kinematics/kinetics were compared to healthy participants (Control). The total positive work of sagittal plane hip, knee and ankle power were compared along with the distribution of power. RESULTS Patients in the Weak/Stiff hip groups did not walk with greater ankle plantarflexion, peak push-off power or positive ankle work on their affected sides compared to Control. Ankle work contribution (percentage of total positive work) on the affected or unaffected sides was greater in the Perthes and Hip Fusion patients compared to Control. Significant gait abnormalities on the unaffected side were observed. CONCLUSIONS Patients with a weak or stiff hip did exhibit altered ankle mechanics during walking. Greater percent ankle work contribution appeared to correspond with hip stiffness. In patients with hip pathology the redistribution of power among the lower extremity joints can highlight the importance of preserving ankle function.
Collapse
|