1
|
Chen J, Li S, Ma D, Li L, Zhuang W, Chen M. A lipid droplet-specific fluorescence probe for atherosclerotic plaque imaging. Analyst 2022; 147:3081-3086. [PMID: 35678714 DOI: 10.1039/d1an01937f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dysregulation of lipid droplets (LDs) is closely related to certain metabolic diseases, while the role of LDs during pathological processes remains mysterious. It would be of great value to monitor the dynamic changes of LDs in a visible way so as to study their biological functions. In this study, we report a LD-specific fluorescence probe TBI for precise LD-targeting imaging in cells and atherosclerotic tissues. TBI exhibited great biocompatibility, remarkable oil-enhanced fluorescence emission, good photostability and impressive intracellular and tissular LD-specific imaging performance. Importantly, TBI could efficiently stain the LDs at a low concentration of 50 nM, and the motion tracking of LDs could be observed via fluorescence imaging. Moreover, TBI could efficiently light up the LD distribution in mouse atherosclerotic plaques with high resolution, which revealed the ultra-structure of atherosclerotic plaques. In conclusion, these results imply that TBI could be a potential tool for investigating the physiological and pathological role of LDs.
Collapse
Affiliation(s)
- Jingruo Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Shufen Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Di Ma
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lilan Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China.
| | - Mao Chen
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China. .,Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.,Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, PR China
| |
Collapse
|
2
|
Zhao ZW, Zhang M, Liao LX, Zou J, Wang G, Wan XJ, Zhou L, Li H, Qin YS, Yu XH, Tang CK. Long non-coding RNA PCA3 inhibits lipid accumulation and atherosclerosis through the miR-140-5p/RFX7/ABCA1 axis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158904. [PMID: 33578049 DOI: 10.1016/j.bbalip.2021.158904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The purpose of this study was to explore the role of long noncoding RNA (lncRNA) prostate cancer antigen 3 (PCA3) in atherosclerosis and the underlying mechanism. METHODS The Gene Expression Omnibus (GEO) datasets were used to divide differentially expressed lncRNAs, microRNAs (miRNAs), and mRNAs. The expression of PCA3, miR-140-5p, RFX7 and ABCA1 were determined by qPCR or Western blot in ox-LDL-treated macrophages. Macrophage lipid accumulation s was evaluated using the Oil Red O staining and high-performance liquid chromatography. Target relationships among PCA3, miR-140-5p, RFX7, and ABCA1 promoter area were validated via dual-luciferase reporter gene assay or chromatin immunoprecipitation assay. The apoE-/- mouse model in vivo was designed to evaluate the effect of PCA3 on the reverse cholesterol transport (RCT) and atherosclerosis. RESULTS PCA3 was down-regulated in foam cells, whereas miR-140-5p was highly expressed. Overexpression of PCA3 promoted ABCA1-mediated cholesterol efflux and reduced lipid accumulation in macrophages. Besides, RFX7 bound to the ABCA1 promoter and increased ABCA1 expression. Targeted relationships and interactions on the expression between miR-140-5p and PCA3 or RFX7 were elucidated. PCA3 up-regulated ABCA1 expression by binding to miR-140-5p to up-regulate RFX7 and ABCA1 expression in macrophages. PCA3 promoted RCT and impeded the progression of atherosclerosis by sponging miR-140-5p in apoE-/- mice. Meanwhile, miR-140-5p also inhibit ABCA1 expression via downregulation of RFX7 to impede RCT and aggravate atherosclerosis. CONCLUSIONS lncRNA PCA3 promotes ABCA1-mediated cholesterol efflux to inhibit atherosclerosis through sponging miR-140-5p and up-regulating RFX7.
Collapse
Affiliation(s)
- Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ling-Xiao Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.; Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang-Jun Wan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu-Sheng Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China..
| |
Collapse
|
3
|
Wang Y, Wen Y, Xiao P, Sun J, Chen M, Gu C, Kong Y, Gu A, Zhang J, Wang Y. Di-n-butyl phthalate promotes lipid accumulation via the miR200c-5p-ABCA1 pathway in THP-1 macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114723. [PMID: 32417575 DOI: 10.1016/j.envpol.2020.114723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Di-n-butyl phthalate (DBP) is ubiquitously in the environment and has been detected in almost all of human bodies. Few data could be found about the effects of DBP on cardiovascular system, though its reproductive toxicities have been studied extensively. This study aimed to explore the effects of DBP on lipid metabolism, a key step during the formation of atherosclerosis, since DBP was recently reported to be associated with atherosclerosis. THP-1 macrophages were employed and exposed to various levels of DBP (10-8, 10-7, 10-6, 10-5 and 10-4 mol/L) or DMSO as control. Lipid accumulation was determined by detection of cellular total cholesterol, free cholesterol, cholesterol ester and content of lipid drops. Expressions of mRNA/miRNAs and proteins were measured by qRT-PCR and western blotting, respectively. Bioinformatic analysis and dual luciferase reporter assay were used to analyze the combination between miR200c-5p and ATP-binding cassette transporter A1 (ABCA1). Cholesterol efflux assay was executed to study the inhibitory effects of DBP on cholesterol efflux capability. Results revealed that DBP at 10-7 mol/L prompted THP-1 macrophages lipid accumulation by inhibiting cholesterol efflux via suppressing ABCA1 expression. In addition, a non-linear inverted U-shaped relationship between DBP and lipid accumulation could be observed. Moreover, miR200c-5p could directly targets to ABCA1 3'UTR and modulate ABCA1 expression. Besides, downregulation of ABCA1 expression and reduction of lipid efflux induced by DBP were due to the miR200c-5p upregulation. Collectively, these data suggested that DBP at levels relative to human exposure could increase lipid accumulation in THP-1 macrophages by decreasing cholesterol efflux through miR200c-5p-ABCA1, then potentiate the formation of atherosclerosis.
Collapse
Affiliation(s)
- Yidi Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yun Wen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Chenxi Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Yi Kong
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Aihua Gu
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | - Jingshu Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China
| | - Yubang Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; The Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Ou M, Li X, Zhao S, Cui S, Tu J. Long non-coding RNA CDKN2B-AS1 contributes to atherosclerotic plaque formation by forming RNA-DNA triplex in the CDKN2B promoter. EBioMedicine 2020; 55:102694. [PMID: 32335370 PMCID: PMC7184162 DOI: 10.1016/j.ebiom.2020.102694] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Atherosclerosis involves a slow process of plaque formation on the walls of arteries, and comprises a leading cause of cardiovascular disease. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of atherosclerosis. In this study, we aim to explore the possible involvement of lncRNA 'cyclin-dependent kinase inhibitor 2B antisense noncoding RNA' (CDKN2B-AS1) and CDKN2B in the progression of atherosclerosis. METHODS Initially, we quantified the expression of CDKN2B-AS1 in atherosclerotic plaque tissues and, in THP-1 macrophage-derived, and human primary macrophage (HPM)-derived foam cells. Next, we established a mouse model of atherosclerosis using apolipoprotein E knockout (ApoE-/-) mice, where lipid uptake, lipid accumulation, and macrophage reverse cholesterol transport (mRCT) were assessed, in order to explore the contributory role of CDKN2B-AS1 to the progression of atherosclerosis. RIP and ChIP assays were used to identify interactions between CDKN2B-AS1, CCCTC-binding factor (CTCF), enhancer of zeste homologue 2 (EZH2), and CDKN2B. Triplex formation was determined by RNA-DNA pull-down and capture assay as well as EMSA experiment. FINDINGS CDKN2B-AS1 showed high expression levels in atherosclerosis, whereas CDKN2B showed low expression levels. CDKN2B-AS1 accelerated lipid uptake and intracellular lipid accumulation whilst attenuating mRCT in THP-1 macrophage-derived foam cells, HPM-derived foam cells, and in the mouse model. EZH2 and CTCF were found to bind to the CDKN2B promoter region. An RNA-DNA triplex formed by CDKN2B-AS1 and CDKN2B promoter was found to recruit EZH2 and CTCF in the CDKN2B promoter region and consequently inhibit CDKN2B transcription by accelerating histone methylation. INTERPRETATION The results demonstrated that CDKN2B-AS1 promotes atherosclerotic plaque formation and inhibits mRCT in atherosclerosis by regulating CDKN2B promoter, and thereby could be a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Xia Li
- Department of Ultrasound, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Shibo Zhao
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Shichao Cui
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Jie Tu
- Department of Science and Education, Qingdao Municipal Hospital, No. 1, Jiaozhou Road, Shibei District, Qingdao 266011, Shandong Province, PR China.
| |
Collapse
|
5
|
Yan Y, Song D, Wu J, Wang J. Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Front Immunol 2020; 11:24. [PMID: 32082313 PMCID: PMC7003668 DOI: 10.3389/fimmu.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized as a chronic inflammatory response to cholesterol deposition in arteries. Low-density lipoprotein (LDL), especially the oxidized form (ox-LDL), plays a crucial role in the occurrence and development of atherosclerosis by inducing endothelial cell (EC) dysfunction, attracting monocyte-derived macrophages, and promoting chronic inflammation. However, the mechanisms linking cholesterol accumulation with inflammation in macrophage foam cells are poorly understood. Long non-coding RNAs (lncRNAs) are a group of non-protein-coding RNAs longer than 200 nucleotides and are found to regulate the progress of atherosclerosis. Recently, many lncRNAs interfering with cholesterol deposition or inflammation were identified, which might help elucidate their underlying molecular mechanism or be used as novel therapeutic targets. In this review, we summarize and highlight the role of lncRNAs linking cholesterol (mainly ox-LDL) accumulation with inflammation in macrophages during the process of atherosclerosis.
Collapse
Affiliation(s)
- Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Orekhov AN, Nikiforov NG, Sukhorukov VN, Kubekina MV, Sobenin IA, Wu WK, Foxx KK, Pintus S, Stegmaier P, Stelmashenko D, Kel A, Gratchev AN, Melnichenko AA, Wetzker R, Summerhill VI, Manabe I, Oishi Y. Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis. Int J Mol Sci 2020; 21:ijms21030817. [PMID: 32012706 PMCID: PMC7037225 DOI: 10.3390/ijms21030817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (V.I.S.)
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Marina V. Kubekina
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10002, Taiwan
| | - Kathy K. Foxx
- Kalen Biomedical, LLC, Montgomery Village, MD 20886, USA
| | - Sergey Pintus
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- Institute of Computational Technologies, 630090 Novosibirsk, Russia
| | | | - Daria Stelmashenko
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- geneXplain GmbH, 38302 Wolfenbüttel, Germany
| | - Alexander Kel
- BIOSOFT.RU, LLC, 630090 Novosibirsk, Russia
- geneXplain GmbH, 38302 Wolfenbüttel, Germany
- Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Alexei N. Gratchev
- N. N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., 115478 Moscow, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia
| | - Reinhard Wetzker
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Am Klinikum 1, D-07747 Jena, Germany
| | - Volha I. Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (V.I.S.)
| | - Ichiro Manabe
- Department of Aging Research, Graduate School of Medicine, Chiba University, Chiba 263-8522, Japan
| | - Yumiko Oishi
- Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
7
|
Liang H, Chen M, Qi F, Shi L, Duan Z, Yang R, He J, Lou B, Li Y, Yang Q. The proatherosclerotic function of indoleamine 2, 3-dioxygenase 1 in the developmental stage of atherosclerosis. Signal Transduct Target Ther 2019; 4:23. [PMID: 31637003 PMCID: PMC6799842 DOI: 10.1038/s41392-019-0058-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
The discrepancy of indoleamine 2, 3-dioxygenase 1 (IDO1) function in atherosclerosis has been noted. Compared to the protective effect of IDO1 against established atherogenesis, the role of IDO1 in the developmental process of atherosclerosis is still unclear. Here, the expression patterns and activities of IDO1 and its isoenzyme tryptophan 2,3-dioxygenase (TDO) in aortas and blood samples of patients with atherosclerosis were investigated. IDO1 and TDO were colocalized with CD3-positive lymphocytes and CD68-positive macrophages in atherosclerotic lesions. The expression and activity of IDO1 and TDO increased with the grade of the histological classification in early atherosclerosis (grade I, II), but the increase did not continue in advanced atherosclerosis (grade III). Treatment of THP-1 macrophages (THP-M) with oxidized low-density lipoprotein (oxLDL) induced the expression of IDO1 via the PI3K/Akt/NF-κB pathway, indicating the potential function of IDO1 in foam cells. Before and after treatment with oxLDL on THP-M, IFN-γ-induced IDO1 exhibited different degrees of promotion on foaming, inflammatory factor production and cell apoptosis. Finally, we found that the IDO1 inhibitor 1-methyl-tryptophan could elevate the high-density lipoprotein cholesterol level in serum and reduce the area of the aortic atherosclerotic lesions in high-fat diet-fed ApoE-/- mice. Our study indicated that IDO1 played a complicated and unfixed role in the entire process of atherogenesis, despite the atheroprotective role in established atherosclerosis. IDO1 also had proatherosclerotic functions in the developmental stages of atherosclerosis. Modulation of IDO1 could be a good method for alleviating atherosclerosis.
Collapse
Affiliation(s)
- Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Mantian Chen
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fangfei Qi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhenzhen Duan
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Ruoyu Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinchao He
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Lou
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yigang Li
- Department of Cardiovascular Diseases, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Zhao Q, Sun D, Li Y, Qin J, Yan J. Integrated analyses of lncRNAs microarray profiles and mRNA-lncRNA coexpression in smooth muscle cells under hypoxic and normoxic conditions. Biosci Rep 2019; 39:BSR20181783. [PMID: 30850398 PMCID: PMC6443952 DOI: 10.1042/bsr20181783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/23/2023] Open
Abstract
Hypoxia may cause abnormal proliferation and migration of the vascular smooth muscle cells (VSMCs) from the media to the intima. This contributes to vessel narrowing and accelerates the process of atherosclerosis. The association of the aberrant expression of long noncoding RNAs (lncRNAs) with the development and progression of atherosclerosis is well known; however, it is not well investigated in hypoxic VSMCs. Using a microarray approach, we identified 1056 and 2804 differentially expressed lncRNAs and mRNAs, respectively, in hypoxic and normoxic mouse aorta smooth muscle (MOVAS) cells. Of them, we randomly chose several lncRNAs and validated the microarray data using the quantitative PCR (qPCR) assay. Advanced bioinformatics analyses indicated that the up-regulated mRNAs were mainly involved in inflammatory responses, lipid metabolism, clearance of amyloid-β peptide, citrate cycle (TCA cycle), TGF-β signaling, and chemokine signaling. The down-regulated mRNAs were mainly involved in the apoptosis pathway, glycerolipid metabolism, Wnt signaling pathway, and MAPK signaling pathway. The constructed coexpression network indicated interactions between 87 lncRNAs and ten mRNAs. In addition, we demonstrated that the silence of lncRNA NONMMUT002434 expression could abrogate the migration and proliferation of smooth muscle cells dramatically. Our data provide comprehensive evidence on the differential expression of lncRNAs and mRNAs in hypoxic MOVAS cells, which may be valuable biomarkers for atherosclerotic diseases, and thereby facilitating diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Qinshuo Zhao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dating Sun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuanyuan Li
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jin Qin
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - JiangTao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
9
|
Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics 2018; 8:3654-3675. [PMID: 30026873 PMCID: PMC6037039 DOI: 10.7150/thno.26024] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a large subgroup of RNAs that are longer than 200 nucleotides and have no apparent protein coding potential. They have diverse functions in different biological processes by regulating chromatin remodeling or protein translation. This review summarizes the recent progress of lncRNAs in angiogenesis and vascular diseases. A general overview of lncRNA functional mechanisms will be introduced. A list of lncRNAs, which are termed "Angio-LncRs", including MALAT1, MANTIS, PUNISHER, MEG3, MIAT, SENCR and GATA6-AS, will be discussed regarding their expression, regulation, function and mechanism of action in angiogenesis. Implications of lncRNAs in vascular diseases, such as atherosclerosis, hypertension, vascular retinopathies and tumor angiogenesis will also be discussed.
Collapse
Affiliation(s)
- Bo Yu
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
- Department of Ophthalmology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-69, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages. Eur J Pharmacol 2017; 811:74-86. [PMID: 28576406 DOI: 10.1016/j.ejphar.2017.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells. The miR-7 directly targeted 3' untranslated region of STK11 (Serine/Threonine Kinase 11), which activated the AMPK pathway. Transfection with miR-7 mimic significantly reduced STK11 expression in puerarin-treated macrophages, decreased the phosphorylation of AMPK, down-regulated the expression of the PPARγ-LXR-α-ABCA1 expression. Additionally, treatment with miR-7 decreased cholesterol efflux and increased cholesterol levels in THP-1 macrophage-derived foam cells. Our study demonstrates that puerarin promotes ABCA1-mediated cholesterol efflux and decreases intracellular cholesterol levels through the pathway involving miR-7, STK11, and the AMPK-PPARγ-LXR-α-ABCA1 cascade.
Collapse
|
11
|
Jia SJ, Gao KQ, Zhao M. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovasc Ther 2017; 35. [PMID: 28371472 DOI: 10.1111/1755-5922.12262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Su-Jie Jia
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ke-Qin Gao
- Department of Pharmaceutics; The Third Xiangya Hospital, Central South University; Changsha China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics; The Second Xiangya Hospital, Central South University; Changsha China
| |
Collapse
|