1
|
Mancini SJC, Balabanian K, Corre I, Gavard J, Lazennec G, Le Bousse-Kerdilès MC, Louache F, Maguer-Satta V, Mazure NM, Mechta-Grigoriou F, Peyron JF, Trichet V, Herault O. Deciphering Tumor Niches: Lessons From Solid and Hematological Malignancies. Front Immunol 2021; 12:766275. [PMID: 34858421 PMCID: PMC8631445 DOI: 10.3389/fimmu.2021.766275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Knowledge about the hematopoietic niche has evolved considerably in recent years, in particular through in vitro analyzes, mouse models and the use of xenografts. Its complexity in the human bone marrow, in particular in a context of hematological malignancy, is more difficult to decipher by these strategies and could benefit from the knowledge acquired on the niches of solid tumors. Indeed, some common features can be suspected, since the bone marrow is a frequent site of solid tumor metastases. Recent research on solid tumors has provided very interesting information on the interactions between tumoral cells and their microenvironment, composed notably of mesenchymal, endothelial and immune cells. This review thus focuses on recent discoveries on tumor niches that could help in understanding hematopoietic niches, with special attention to 4 particular points: i) the heterogeneity of carcinoma/cancer-associated fibroblasts (CAFs) and mesenchymal stem/stromal cells (MSCs), ii) niche cytokines and chemokines, iii) the energy/oxidative metabolism and communication, especially mitochondrial transfer, and iv) the vascular niche through angiogenesis and endothelial plasticity. This review highlights actors and/or pathways of the microenvironment broadly involved in cancer processes. This opens avenues for innovative therapeutic opportunities targeting not only cancer stem cells but also their regulatory tumor niche(s), in order to improve current antitumor therapies.
Collapse
Affiliation(s)
- Stéphane J C Mancini
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMR1236, Rennes 1 University, Etablissement Français du Sang Bretagne, Rennes, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France
| | - Karl Balabanian
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Saint-Louis Research Institute, University of Paris, EMiLy, INSERM U1160, Paris, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Isabelle Corre
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France
| | - Julie Gavard
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,Center for Research in Cancerology and Immunology Nantes-Angers (CRCINA), Signaling in Oncogenesis Angiogenesis and Permeability (SOAP), INSERM UMR1232, Centre National de la Recherche scientifique (CNRS) ERL600, Université de Nantes, Nantes, France.,Integrated Center for Oncology, St. Herblain, France
| | - Gwendal Lazennec
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Centre National de la Recherche scientifique (CNRS) UMR9005, SYS2DIAG-ALCEDIAG, Montpellier, France
| | - Marie-Caroline Le Bousse-Kerdilès
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Fawzia Louache
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM UMRS-MD1197, Paris-Saclay University, Paul-Brousse Hospital, Villejuif, France
| | - Véronique Maguer-Satta
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancer Research Center of Lyon (CRCL), CNRS UMR5286, INSERM U1052, Lyon 1 university, Lean Bérard Center, Lyon, France
| | - Nathalie M Mazure
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Fatima Mechta-Grigoriou
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Stress and Cancer Laboratory, Institut Curie, INSERM U830, Paris Sciences et Lettres (PSL) Research University, Team Babelized Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Jean-François Peyron
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,INSERM U1065, C3M, University of Côte d'Azur (UCA), Nice, France
| | - Valérie Trichet
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,INSERM UMR1238 Phy-Os, Université de Nantes, Nantes, France
| | - Olivier Herault
- Centre National de la Recherche scientifique (CNRS) GDR3697, Micronit "Microenvironment of Tumor Niches", Tours, France.,Cancéropole Grand-Ouest, NET network "Niches and Epigenetics of Tumors", Nantes, France.,The Organization for Partnerships in Leukemia (OPALE) Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.,Centre National de la Recherche scientifique (CNRS) ERL7001 LNOx, EA7501, Tours University, Tours, France.,Department of Biological Hematology, Tours University Hospital, Tours, France
| |
Collapse
|
2
|
Selicean SE, Tomuleasa C, Grewal R, Almeida-Porada G, Berindan-Neagoe I. Mesenchymal stem cells in myeloproliferative disorders - focus on primary myelofibrosis. Leuk Lymphoma 2018; 60:876-885. [PMID: 30277128 DOI: 10.1080/10428194.2018.1516881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primary myelofibrosis (PMF) is the most aggressive Philadelphia-negative (Ph-) myeloproliferative neoplasm (MPN), characterized by bone marrow (BM) insufficiency, myelofibrosis (MF), osteosclerosis, neoangiogenesis, and extramedullary hematopoiesis (EMH) in spleen and liver. Presently, there is no curative treatment for this disease and therapy consists primarily of symptom relief and, in selected cases, allogeneic hematopoietic stem cell transplant (alloHSCT). PMF's major defining characteristics, as well as several recently described aspects of its cellular and molecular pathophysiology all support a critical role for dysregulated cell-cell/cell-extracellular matrix interactions and cytokine/chemokine signaling within the BM niche in the natural history of this disease. This review will highlight current data concerning the involvement of the BM niche, particularly of mesenchymal stem cells (MSC), in PMF, and will then discuss the rationale for a stroma-directed treatment, and the advantages such an approach would offer over the current treatments focused on targeting the malignant clone.
Collapse
Affiliation(s)
- Sonia Emilia Selicean
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,b Department of Hematology , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj Napoca , Romania
| | - Ciprian Tomuleasa
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania.,b Department of Hematology , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj Napoca , Romania.,c Department of Hematology , Ion Chiricuta Clinical Research Center , Cluj Napoca , Romania
| | - Ravnit Grewal
- d Department of Pathology , South African National Bioinformatics Institute , Cape Town , South Africa
| | - Graca Almeida-Porada
- e Wake Forest Institute for Regenerative Medicine , Wake Forest University School of Medicine , Winston-Salem , NC , USA
| | - Ioana Berindan-Neagoe
- a Research Center for Functional Genomics and Translational Medicine , Iuliu Haţieganu University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
4
|
Vainchenker W, Constantinescu SN, Plo I. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000Res 2016; 5. [PMID: 27134742 PMCID: PMC4841197 DOI: 10.12688/f1000research.8081.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/01/2023] Open
Abstract
The classic
BCR-ABL-negative myeloproliferative neoplasms (MPNs), a form of chronic malignant hemopathies, have been classified into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). ET and PMF are two similar disorders in their pathogenesis, which is marked by a key role of the megakaryocyte (MK) lineage. Whereas ET is characterized by MK proliferation, PMF is also associated with aberrant MK differentiation (myelodysplasia), leading to the release of cytokines in the marrow environment, which causes the development of myelofibrosis. Thus, PMF is associated with both myeloproliferation and different levels of myelodysplastic features. MPNs are mostly driven by mutated genes called MPN drivers, which abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors. The recent discovery of
CALR mutations has closed a gap in our knowledge and has shown that this mutated endoplasmic reticulum chaperone activates the thrombopoietin receptor MPL and JAK2. These genetic studies have shown that there are two main types of MPNs: JAK2V617F-MPNs, including ET, PV, and PMF, and the MPL-/CALR-MPNs, which include only ET and PMF. These MPN driver mutations are associated with additional mutations in genes involved in epigenetics, splicing, and signaling, which can precede or follow the acquisition of MPN driver mutations. They are involved in clonal expansion or phenotypic changes or both, leading to myelofibrosis or leukemic transformation or both. Only a few patients with ET exhibit mutations in non-MPN drivers, whereas the great majority of patients with PMF harbor one or several mutations in these genes. However, the entire pathogenesis of ET and PMF may also depend on other factors, such as the patient’s constitutional genetics, the bone marrow microenvironment, the inflammatory response, and age. Recent advances allowed a better stratification of these diseases and new therapeutic approaches with the development of JAK2 inhibitors.
Collapse
Affiliation(s)
- William Vainchenker
- Gustave Roussy, Paris, France; Universite Paris-Saclay, Gustave Roussy, Paris, France
| | - Stefan N Constantinescu
- Signal Transduction & Molecular Hematology Unit, Ludwig Institute for Cancer Research, Brussels, Belgium; de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Isabelle Plo
- Gustave Roussy, Paris, France; Universite Paris-Saclay, Gustave Roussy, Paris, France
| |
Collapse
|