1
|
Navarro B, Gisel A, Serra P, Chiumenti M, Di Serio F, Flores R. Degradome Analysis of Tomato and Nicotiana benthamiana Plants Infected with Potato Spindle Tuber Viroid. Int J Mol Sci 2021; 22:3725. [PMID: 33918424 PMCID: PMC8038209 DOI: 10.3390/ijms22073725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are infectious non-coding RNAs that infect plants. During infection, viroid RNAs are targeted by Dicer-like proteins, generating viroid-derived small RNAs (vd-sRNAs) that can guide the sequence specific cleavage of cognate host mRNAs via an RNA silencing mechanism. To assess the involvement of these pathways in pathogenesis associated with nuclear-replicating viroids, high-throughput sequencing of sRNAs and degradome analysis were carried out on tomato and Nicotiana benthamiana plants infected by potato spindle tuber viroid (PSTVd). Both hosts develop similar stunting and leaf curling symptoms when infected by PSTVd, thus allowing comparative analyses. About one hundred tomato mRNAs potentially targeted for degradation by vd-sRNAs were initially identified. However, data from biological replicates and comparisons between mock and infected samples reduced the number of bona fide targets-i.e., those identified with high confidence in two infected biological replicates but not in the mock controls-to only eight mRNAs that encode proteins involved in development, transcription or defense. Somewhat surprisingly, results of RT-qPCR assays revealed that the accumulation of only four of these mRNAs was inhibited in the PSTVd-infected tomato. When these analyses were extended to mock inoculated and PSTVd-infected N. benthamiana plants, a completely different set of potential mRNA targets was identified. The failure to identify homologous mRNA(s) targeted by PSTVd-sRNA suggests that different pathways could be involved in the elicitation of similar symptoms in these two species. Moreover, no significant modifications in the accumulation of miRNAs and in the cleavage of their targeted mRNAs were detected in the infected tomato plants with respect to the mock controls. Taken together, these data suggest that stunting and leaf curling symptoms induced by PSTVd are elicited by a complex plant response involving multiple mechanisms, with RNA silencing being only one of the possible components.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Andreas Gisel
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy;
- International Institute of Tropical Agriculture, Ibadan 200001, Nigeria
| | - Pedro Serra
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy; (B.N.); (M.C.)
| | - Ricardo Flores
- Istituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain; (P.S.); (R.F.)
| |
Collapse
|
2
|
Więsyk A, Iwanicka-Nowicka R, Fogtman A, Zagórski-Ostoja W, Góra-Sochacka A. Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10050257. [PMID: 29762480 PMCID: PMC5977250 DOI: 10.3390/v10050257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023] Open
Abstract
Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in “Rutgers” tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd). The changes were analyzed over a time course of viroid infection development: (i) the pre-symptomatic stage; (ii) early symptoms; (iii) full spectrum of symptoms and (iv) the so-called ‘recovery’ stage, when stem regrowth was observed in severely affected plants. Gene expression profiles differed depending on stage of infection and variant. In S23-infected plants, the expression of over 3000 genes was affected, while M-infected plants showed 3-fold fewer differentially expressed genes, only 20% of which were specific to the M variant. The differentially expressed genes included many genes related to stress; defense; hormone metabolism and signaling; photosynthesis and chloroplasts; cell wall; RNA regulation, processing and binding; protein metabolism and modification and others. The expression levels of several genes were confirmed by nCounter analysis.
Collapse
Affiliation(s)
- Aneta Więsyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; (A.W.); (R.I.-N.); (A.F.)
- Correspondence: ; Tel.: +48-22-592-34-08; Fax: +48-22-592-21-90
| |
Collapse
|
3
|
Adkar-Purushothama CR, Bru P, Perreault JP. 3' RNA ligase mediated rapid amplification of cDNA ends for validating viroid induced cleavage at the 3' extremity of the host mRNA. J Virol Methods 2017; 250:29-33. [PMID: 28947148 DOI: 10.1016/j.jviromet.2017.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) is a widely-accepted method for the validation of direct cleavage of a target gene by a microRNA (miRNA) and viroid-derived small RNA (vd-sRNA). However, this method cannot be used if cleavage takes place in the 3' extremity of the target RNA, as this gives insufficient sequence length to design nested PCR primers for 5' RLM RACE. To overcome this hurdle, we have developed 3' RNA ligase-mediated rapid amplification of cDNA ends (3' RLM RACE). In this method, an oligonucleotide adapter having 5' adenylated and 3' blocked is ligated to the 3' end of the cleaved RNA followed by PCR amplification using gene specific primers. In other words, in 3' RLM RACE, 3' end is mapped using 5' fragment instead of small 3' fragment. The method developed here was verified by examining the bioinformatics predicted and parallel analysis of RNA ends (PARE) proved cleavage sites of chloride channel protein CLC-b-like mRNA in Potato spindle tuber viroid infected tomato plants. The 3' RLM RACE developed in this study has the potential to validate the miRNA and vd-sRNA mediated cleavage of mRNAs at its 3' untranslated region (3' UTR).
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean--Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| | - Pierrick Bru
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean--Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 rue Jean--Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
4
|
Brass JRJ, Owens RA, Matoušek J, Steger G. Viroid quasispecies revealed by deep sequencing. RNA Biol 2017; 14:317-325. [PMID: 28027000 PMCID: PMC5367258 DOI: 10.1080/15476286.2016.1272745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022] Open
Abstract
Viroids are non-coding single-stranded circular RNA molecules that replicate autonomously in infected host plants causing mild to lethal symptoms. Their genomes contain about 250-400 nucleotides, depending on viroid species. Members of the family Pospiviroidae, like the Potato spindle tuber viroid (PSTVd), replicate via an asymmetric rolling-circle mechanism using the host DNA-dependent RNA-Polymerase II in the nucleus, while members of Avsunviroidae are replicated in a symmetric rolling-circle mechanism probably by the nuclear-encoded polymerase in chloroplasts. Viroids induce the production of viroid-specific small RNAs (vsRNA) that can direct (post-)transcriptional gene silencing against host transcripts or genomic sequences. Here, we used deep-sequencing to analyze vsRNAs from plants infected with different PSTVd variants to elucidate the PSTVd quasipecies evolved during infection. We recovered several novel as well as previously known PSTVd variants that were obviously competent in replication and identified common strand-specific mutations. The calculated mean error rate per nucleotide position was less than [Formula: see text], quite comparable to the value of [Formula: see text] reported for a member of Avsunviroidae. The resulting error threshold allows the synthesis of longer-than-unit-length replication intermediates as required by the asymmetric rolling-circle mechanism of members of Pospiviroidae.
Collapse
Affiliation(s)
- Joseph R. J. Brass
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Robert A. Owens
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD, USA
| | - Jaroslav Matoušek
- Biology Centre, CAS, v. v. i., Institute of Plant Molecular Biology, Branišovská, České Budějovice, Czech Republic
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Lv DQ, Liu SW, Zhao JH, Zhou BJ, Wang SP, Guo HS, Fang YY. Replication of a pathogenic non-coding RNA increases DNA methylation in plants associated with a bromodomain-containing viroid-binding protein. Sci Rep 2016; 6:35751. [PMID: 27767195 PMCID: PMC5073342 DOI: 10.1038/srep35751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.
Collapse
MESH Headings
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Green Fluorescent Proteins/genetics
- Plant Diseases/genetics
- Plant Diseases/virology
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Untranslated/biosynthesis
- RNA, Viral/biosynthesis
- RNA-Binding Proteins/metabolism
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/virology
- Viroids/genetics
- Viroids/pathogenicity
- Viroids/physiology
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Dian-Qiu Lv
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, China
| | - Shang-Wu Liu
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bang-Jun Zhou
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Peng Wang
- Virus-free Seedling Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|