1
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. eLife 2024; 12:RP88087. [PMID: 38315095 PMCID: PMC10945306 DOI: 10.7554/elife.88087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
2
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536402. [PMID: 38014147 PMCID: PMC10680564 DOI: 10.1101/2023.04.11.536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| |
Collapse
|
3
|
Pan Y, Hu C, Hou LJ, Chen YL, Shi J, Liu JC, Zhou JQ. Swc4 protects nucleosome-free rDNA, tDNA and telomere loci to inhibit genome instability. DNA Repair (Amst) 2023; 127:103512. [PMID: 37230009 DOI: 10.1016/j.dnarep.2023.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
In the baker's yeast Saccharomyces cerevisiae, NuA4 and SWR1-C, two multisubunit complexes, are involved in histone acetylation and chromatin remodeling, respectively. Eaf1 is the assembly platform subunit of NuA4, Swr1 is the assembly platform and catalytic subunit of SWR1-C, while Swc4, Yaf9, Arp4 and Act1 form a functional module, and is present in both NuA4 and SWR1 complexes. ACT1 and ARP4 are essential for cell survival. Deletion of SWC4, but not YAF9, EAF1 or SWR1 results in a severe growth defect, but the underlying mechanism remains largely unknown. Here, we show that swc4Δ, but not yaf9Δ, eaf1Δ, or swr1Δ cells display defects in DNA ploidy and chromosome segregation, suggesting that the defects observed in swc4Δ cells are independent of NuA4 or SWR1-C integrity. Swc4 is enriched in the nucleosome-free regions (NFRs) of the genome, including characteristic regions of RDN5s, tDNAs and telomeres, independently of Yaf9, Eaf1 or Swr1. In particular, rDNA, tDNA and telomere loci are more unstable and prone to recombination in the swc4Δ cells than in wild-type cells. Taken together, we conclude that the chromatin associated Swc4 protects nucleosome-free chromatin of rDNA, tDNA and telomere loci to ensure genome integrity.
Collapse
Affiliation(s)
- Yue Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin-Jun Hou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Long Chen
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiantao Shi
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Qiu Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Dong D, Wang X, Zong H, Lu X, Zhuge B. Construction of a novel plasmid for an industrial yeast Candida glycerinogenes by dual-autonomously replicating sequence strategy. J Biosci Bioeng 2023; 135:10-16. [PMID: 36253249 DOI: 10.1016/j.jbiosc.2022.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/06/2022]
Abstract
Due to the lack of available episomal plasmid, the improvement of many industrial strains, especially exogenous gene expression, is severely restricted. The failure of autonomous replication or low copy number of episomal plasmids is the main reason for the failure of many episomal plasmids construction. In this paper, Candida glycerinogenes, an industrial strain lacking episomal plasmids, was employed as the topic. A series of GFP-based plasmids containing autonomously replicating sequence (ARS) from different strain sources were constructed and analyzed for performance, and it was found that only the panARS from Kluyveromyces lactis compared with other nine low capacity ARSs proved to have the best performance and could be used to construct episomal plasmid. Further, the dual-ARS strategy was used to optimize the episomal plasmid, and the results indicated that only the dual-ARS plasmid +PPARS2 with double different ARSs, not the dual-ARS plasmid +panARS with double same ARSs, showed an improvement in all properties, with an increase in transformation efficiency of about 36% and a synchronous trend of fluorescence intensity and copy number, both by about 40%. In addition, constructed episomal plasmids were used to express the exogenous gene CrGES, and the fact that geraniol was found proved the versatility of the plasmids. The successful construction of episomal plasmids will also substantially facilitate genetic engineering research and industrial use of C. glycerinogenes in the future, as well as providing a feasible approach to create episomal plasmids for industrial strains.
Collapse
Affiliation(s)
- Dejin Dong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Singh VK, Kumar V, Krishnamachari A. Prediction of replication sites in Saccharomyces cerevisiae genome using DNA segment properties: Multi-view ensemble learning (MEL) approach. Biosystems 2018; 163:59-69. [DOI: 10.1016/j.biosystems.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|