1
|
Walsh JC, Messersmith LM, Fitzgerald J, De Castro MJ. Forensic Autopsy Reveals Novel Pathogenic Variant of PKD1 Associated With Polycystic Kidney Disease. Am J Forensic Med Pathol 2023; 44:e4-e7. [PMID: 36103413 DOI: 10.1097/paf.0000000000000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John C Walsh
- From the Forensic Pathology Investigations, Armed Forces Medical Examiner System
| | | | | | - Mauricio J De Castro
- Molecular Diagnostic Laboratory, Air Force Medical Genetics Center, 81st Diagnostics and Therapeutics Squadron, Keesler AFB, MS
| |
Collapse
|
2
|
Fluorescent Nanoparticles Coated with a Somatostatin Analogue Target Blood Monocyte for Efficient Leukaemia Treatment. Pharm Res 2020; 37:217. [PMID: 33037505 DOI: 10.1007/s11095-020-02938-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Leukaemia is the most prevalent form of cancer-causing death in a large number of populations and needs prompt and effective treatment. Chemotherapeutics can be used to treat leukaemia, but their pronounced killing effects to other living cells is still an issue. Active targeting to certain specific receptors in leukaemic cells is the best way to avoid damage to other living cells. Leukaemic cells can be targeted using novel nanoparticles (NPs) coated with a specific ligand, such as octreotide (OCD), to target somatostatin receptor type 2 (SSTR2), which is expressed in leukaemic cells. METHODS Amino-PEGylated quantum dots (QDs) were chosen as model NPs. The QDs were first succinylated using succinic anhydride and then coated with OCD. The reactivity and selectivity of the formulated QDs-OCD were studied in cell lines with well-expressed SSTR2, while fluorescence was detected using confocal laser scanning microscopy (CLSM) and flow cytometry (FACS). Conclusively, QD-OCD targeting to blood cells was studied in vivo in mice and detected using inductively coupled plasma mass spectrometry and CLSM in tissues. RESULTS Highly stable QDs coated with OCD were prepared. FACS and CLSM showed highly definite interactions with overexpressed SSTR2 in the investigated cell lines. Moreover, the in vivo results revealed a higher concentration of QDs-OCD in blood cells. The fluorescence intensity of the QDs-OCD was highly accumulated in blood cells, while the unmodified QDs did not accumulate significantly in blood cells. CONCLUSION The formulated novel QDs-OCD can target SSTR2 overexpressed in blood cells with great potential for treating blood cancer.
Collapse
|
3
|
Dong K, Liu X, Jia X, Miao H, Ji W, Wu J, Huang Y, Xu L, Zhang X, Su H, Ji G, Liu P, Guan R, Bai J, Fu S, Zhou X, Sun W. Disease causing property analyzation of variants in 12 Chinese families with polycystic kidney disease. Mol Genet Genomic Med 2020; 8:e1467. [PMID: 32970388 PMCID: PMC7667323 DOI: 10.1002/mgg3.1467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Background Polycystic kidney disease (PKD) is an inherited disease that is life‐threatening. Multiple cysts are present in the bilateral kidneys of PKD patients. The progressively enlarged cysts cause structural damage and loss of kidney function. Methods This study examined and analyzed 12 families with polycystic kidney disease. Whole exome sequencing (WES) or whole genome sequencing (WGS) of the probands was performed to detect the pathogenic genes. The candidate gene segments for lineal consanguinity in the family were amplified by the nest PCR followed by Sanger sequencing. The variants were assessed by pathogenic and conservational property prediction analysis and interpreted according to the American College of Medical Genetics and Genomics. Results Nine of the 12 pedigrees were identified the disease causing variants. Among them, four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) were detected. After assessment, the four novel variants were considered to be pathogenic variants and cause autosomal dominant polycystic kidney disease in family. The detected variants were interpreted. Conclusion The four novel variants in PKD1, c.6930delG:p.C2311Vfs*3, c.1216T>C:p.C406R, c.8548T>C:p.S2850P, and c.3865G>A:p.V1289M (NM_001009944.2) are pathogenic variants and cause autosomal dominant polycystic kidney disease in family.
Collapse
Affiliation(s)
- Kexian Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xiaogang Liu
- Department of Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Huanhuan Miao
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yun Huang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Lidan Xu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xuelong Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hui Su
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Guohua Ji
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xianli Zhou
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Luis-Yanes MI, Martínez Gómez G, Tapia-Romero C, Tejera-Carreño P, García-Nieto VM. Presence of compound heterozygous mutations in the PHKD1 gene in an asymptomatic patient. Nefrologia 2020; 40:672-673. [PMID: 32571524 DOI: 10.1016/j.nefro.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- María Isabel Luis-Yanes
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Georgina Martínez Gómez
- Servicio de Nefrología Pediátrica de la UMAE Hospital de Pediatría CMNO, Guadalajara, México
| | - Carolina Tapia-Romero
- Servicio de Nefrología Pediátrica de la UMAE Hospital de Pediatría CMNO, Guadalajara, México
| | - Patricia Tejera-Carreño
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Víctor M García-Nieto
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España.
| |
Collapse
|
5
|
Al-Muhanna FA, Al-Rubaish AM, Vatte C, Mohiuddin SS, Cyrus C, Ahmad A, Shakil Akhtar M, Albezra MA, Alali RA, Almuhanna AF, Huang K, Wang L, Al-Kuwaiti F, Elsalamouni TSA, Al Hwiesh A, Huang X, Keating B, Li J, Lanktree MB, Al-Ali AK. Exome sequencing of Saudi Arabian patients with ADPKD. Ren Fail 2019; 41:842-849. [PMID: 31488014 PMCID: PMC6735335 DOI: 10.1080/0886022x.2019.1655453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive development of kidney cysts and enlargement and dysfunction of the kidneys. The Consortium of Radiologic Imaging Studies of the Polycystic Kidney Disease (CRISP) cohort revealed that 89.1% had either a PKD1 or PKD2 mutation. Of the CRISP patients with a genetic cause detected, mutations in PKD1 accounted for 85%, while mutations in the PKD2 accounted for the remaining 15%. Here, we report exome sequencing of 16 Saudi patients diagnosed with ADPKD and 16 ethnically matched controls. Methods: Exome sequencing was performed using combinatorial probe-anchor synthesis and improved DNA Nanoballs technology on BGISEQ-500 sequencers (BGI, China) using the BGI Exome V4 (59 Mb) Kit. Identified variants were validated with Sanger sequencing. Results: With the exception of GC-rich exon 1, we obtained excellent coverage of PKD1 (mean read depth = 88) including both duplicated and non-duplicated regions. Of nine patients with typical ADPKD presentations (bilateral symmetrical kidney involvement, positive family history, concordant imaging, and kidney function), four had protein truncating PKD1 mutations, one had a PKD1 missense mutation, and one had a PKD2 mutation. These variants have not been previously observed in the Saudi population. In seven clinically diagnosed ADPKD cases but with atypical features, no PKD1 or PKD2 mutations were identified, but rare predicted pathogenic heterozygous variants were found in cystogenic candidate genes including PKHD1, PKD1L3, EGF, CFTR, and TSC2. Conclusions: Mutations in PKD1 and PKD2 are the most common cause of ADPKD in Saudi patients with typical ADPKD. Abbreviations: ADPKD: Autosomal dominant polycystic kidney disease; CFTR: Cystic fibrosis transmembrane conductance regulator; EGF: Epidermal growth factor; MCIC: Mayo Clinic Imaging Classification; PKD: Polycystic kidney disease; TSC2: Tuberous sclerosis complex 2
Collapse
Affiliation(s)
- Fahad A Al-Muhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Abdullah M Al-Rubaish
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Chittibabu Vatte
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Shamim Shaikh Mohiuddin
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Cyril Cyrus
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Arafat Ahmad
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Mohammed Shakil Akhtar
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | | | - Rudaynah A Alali
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Afnan F Almuhanna
- Department of Radiology, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Kai Huang
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong , Hong Kong
| | - Feras Al-Kuwaiti
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Tamer S Ahmed Elsalamouni
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Abdullah Al Hwiesh
- Department of Internal Medicine, King Fahd Hospital of the University, Al-Khobar, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| | - Xiaoyan Huang
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China
| | - Brendan Keating
- Cardiovascular Institute, University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Jiankang Li
- BGI-Shenzhen , Shenzhen , China.,BGI-Shenzhen, China National GeneBank , Shenzhen , China.,Department of Computer Science, City University of Hong Kong , Hong Kong , Hong Kong
| | | | - Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University , Dammam , Saudi Arabia
| |
Collapse
|
6
|
Identification of a pathogenic mutation in a Chinese pedigree with polycystic kidney disease. Mol Med Rep 2019; 19:2671-2679. [PMID: 30720121 PMCID: PMC6423614 DOI: 10.3892/mmr.2019.9921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a life-threatening inherited disease with a morbidity of 1:500–1,000 worldwide. Numerous progressively enlarging cysts are observed in the bilateral kidneys of patients with PKD, inducing structural damage and loss of kidney function. The present study analyzed one family with PKD. Whole exome sequencing of the proband was performed to detect the pathogenic gene present in the family. Candidate gene segments for lineal consanguinity in the family were amplified by nest polymerase chain reaction, followed by Sanger sequencing. One novel duplication variant (NM_001009944.2:c.9359dupA:p.Y3120_E3121delinsX) and one missense mutation (c.G9022A:p.V3008M) were detected in PKD1. Additionally, the pathogenic substitutions in PKD1 published from the dataset were analyzed. Following analysis and confirmation, the duplication variant NM_001009944.2:c.9359dupA:p.Y3120_E3121delinsX in PKD1, within the polycystin-1, lipoxygenase, α-toxin domain, was considered to be the pathogenic factor in the examined family with autosomal dominant PKD. Additionally, based on the analysis of 4,805 pathogenic substitutions in PKD1 within various regions, the presence of the missense mutation in the N-terminal domain of polycystin-1 may present high pathogenicity in ADPKD.
Collapse
|
7
|
A rare deep intronic mutation of PKHD1 gene, c.8798-459 C > A, causes autosomal recessive polycystic kidney disease by pseudoexon activation. J Hum Genet 2019; 64:207-214. [PMID: 30617278 DOI: 10.1038/s10038-018-0550-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/29/2022]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD), is a rare hepatorenal fibrocystic disorder primarily associated with progressive growth of multiple cysts in the kidneys causing progressive loss of renal function. The disease is linked to mutations in the PKHD1 gene. In this study, we describe the gene diagnosis and prenatal diagnosis for a consanguineous family with two fetuses diagnosed with polycystic kidney disease by fetal sonography during the pregnancy. Sequence analysis of cDNA synthesized from the PKHD1 mRNA of the second induced fetus identified a 111-nucleotide insert at the junction of exon 56 and 57 that originated from intervening sequence (IVS) 56. Further genomic sequencing of IVS 56 of the PKHD1 gene identified a rare homozygous deep intronic mutation (c.8798-459 C > A), which was inherited from the parents and not detectable in 100 unrelated control subjects. Moreover, we explored the pathogenicity of this deep intronic mutation by conducting a minigene splicing assay experiment, which demonstrated that the mutation causes a pseudoexon insertion, which results in a frameshift followed by a premature termination codon in exon 57. Eventually, the parents had a healthy baby by undergoing prenatal genetic diagnosis based on the targeted detection of the intron mutation. The newly identified deep intronic mutation is associated with a rare mechanism of abnormal splicing that expands the spectrum of known PKHD1 gene mutations. It can be used in evidence-based genetic and reproductive counseling for families with ARPKD.
Collapse
|
8
|
Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities. Glycoconj J 2017; 34:467-479. [PMID: 28616799 DOI: 10.1007/s10719-017-9777-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/20/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc3Man9GlcNAc2-PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.
Collapse
|