1
|
Mao B, Lin N, Guo D, He D, Xue H, Chen L, He Q, Zhang M, Chen M, Huang H, Xu L. Molecular analysis and prenatal diagnosis of seven Chinese families with genetic epilepsy. Front Neurosci 2023; 17:1165601. [PMID: 37250406 PMCID: PMC10213446 DOI: 10.3389/fnins.2023.1165601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Genetic epilepsy is a large group of clinically and genetically heterogeneous neurological disorders characterized by recurrent seizures, which have a clear association with genetic defects. In this study, we have recruited seven families from China with neurodevelopmental abnormalities in which epilepsy was a predominant manifestation, aiming to elucidate the underlying causes and make a precise diagnosis for the cases. Methods Whole-exome sequencing (WES) combined with Sanger sequencing was used to identify the causative variants associated with the diseases in addition to essential imaging and biomedical examination. Results A gross intragenic deletion detected in MFSD8 was investigated via gap-polymerase chain reaction (PCR), real-time quantitative PCR (qPCR), and mRNA sequence analysis. We identified 11 variants in seven genes (ALDH7A1, CDKL5, PCDH19, QARS1, POLG, GRIN2A, and MFSD8) responsible for genetic epilepsy in the seven families, respectively. A total of six variants (c.1408T>G in ALDH7A1, c.1994_1997del in CDKL5, c.794G>A in QARS1, c.2453C>T in GRIN2A, and c.217dup and c.863+995_998+1480del in MFSD8) have not yet been reported to be associated with diseases and were all evaluated to be pathogenic or likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Methods Based on the molecular findings, we have associated the intragenic deletion in MFSD8 with the mutagenesis mechanism of Alu-mediated genomic rearrangements for the first time and provided genetic counseling, medical suggestions, and prenatal diagnosis for the families. In conclusion, molecular diagnosis is crucial to obtain improved medical outcomes and recurrence risk evaluation for genetic epilepsy.
Collapse
Affiliation(s)
- Bin Mao
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Danhua Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Deqin He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Qianqian He
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Min Zhang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
2
|
Genetic Diversity and Population Structures in Chinese Miniature Pigs Revealed by SINE Retrotransposon Insertion Polymorphisms, a New Type of Genetic Markers. Animals (Basel) 2021; 11:ani11041136. [PMID: 33921134 PMCID: PMC8071531 DOI: 10.3390/ani11041136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Our previous studies suggested that the short interspersed nuclear element (SINE) retrotransposon insertion polymorphisms (RIPs), as a new type of molecular marker developed very recently, are ideal molecular markers and have the potential to be used for population genetic analysis and molecular breeding in pigs and possibly it can be extended to other livestock animals as well. However, no report is available for the application of SINE RIPs in population genetic analysis in livestock, including pigs. Here, we evaluated 30 SINE RIPs in several indigenous Chinese miniature pig breeds, including three subpopulations of Bama pigs (BM-cov, BM-clo, and BM-inb). BM-cov is a subpopulation conserved in the national conservation farm, and BM-clo is a closed population maintained over 30 years with only 2 boars and 14 sows imported from its original area, while BM-inb herd is an 18 generation continuous inbreeding line based on the BM-clo population. To our knowledge, it is the first time to report the genetic diversity, breed differentiation, and population structures for these populations by using SINE RIPs, and which suggests the feasibility of SINE RIPs in pig genetic analysis. Abstract RIPs have been developed as effective genetic markers and popularly applied for genetic analysis in plants, but few reports are available for domestic animals. Here, we established 30 new molecular markers based on the SINE RIPs, and applied them for population genetic analysis in seven Chinese miniature pigs. The data revealed that the closed herd (BM-clo), inbreeding herd (BM-inb) of Bama miniature pigs were distinctly different from the BM-cov herds in the conservation farm, and other miniature pigs (Wuzhishan, Congjiang Xiang, Tibetan, and Mingguang small ear). These later five miniature pig breeds can further be classified into two clades based on a phylogenetic tree: one included BM-cov and Wuzhishan, the other included Congjiang Xiang, Tibetan, and Mingguang small ear, which was well-supported by structure analysis. The polymorphic information contents estimated by using SINE RIPs are lower than the predictions based on microsatellites. Overall, the genetic distances and breed-relationships between these populations revealed by 30 SINE RIPs generally agree with their evolutions and geographic distributions. We demonstrated the potential of SINE RIPs as new genetic markers for genetic monitoring and population structure analysis in pigs, which can even be extended to other livestock animals.
Collapse
|
3
|
Bertuzzi M, Tang D, Calligaris R, Vlachouli C, Finaurini S, Sanges R, Goldwurm S, Catalan M, Antonutti L, Manganotti P, Pizzolato G, Pezzoli G, Persichetti F, Carninci P, Gustincich S. A human minisatellite hosts an alternative transcription start site for NPRL3 driving its expression in a repeat number-dependent manner. Hum Mutat 2020; 41:807-824. [PMID: 31898848 DOI: 10.1002/humu.23974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Minisatellites, also called variable number of tandem repeats (VNTRs), are a class of repetitive elements that may affect gene expression at multiple levels and have been correlated to disease. Their identification and role as expression quantitative trait loci (eQTL) have been limited by their absence in comparative genomic hybridization and single nucleotide polymorphisms arrays. By taking advantage of cap analysis of gene expression (CAGE), we describe a new example of a minisatellite hosting a transcription start site (TSS) which expression is dependent on the repeat number. It is located in the third intron of the gene nitrogen permease regulator like protein 3 (NPRL3). NPRL3 is a component of the GAP activity toward rags 1 protein complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) activity and it is found mutated in familial focal cortical dysplasia and familial focal epilepsy. CAGE tags represent an alternative TSS identifying TAGNPRL3 messenger RNAs (mRNAs). TAGNPRL3 is expressed in red blood cells both at mRNA and protein levels, it interacts with its protein partner NPRL2 and its overexpression inhibits cell proliferation. This study provides an example of a minisatellite that is both a TSS and an eQTL as well as identifies a new VNTR that may modify mTORC1 activity.
Collapse
Affiliation(s)
| | - Dave Tang
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Raffaella Calligaris
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Mauro Catalan
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Lucia Antonutti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST G. Pini-CTO, ex ICP, Milan, Italy
| | - Francesca Persichetti
- Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan.,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
4
|
Barchitta M, Maugeri A, Li Destri G, Basile G, Agodi A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int J Mol Sci 2019; 20:ijms20153842. [PMID: 31390840 PMCID: PMC6696286 DOI: 10.3390/ijms20153842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) represents the third-most common cancer worldwide and one of the main challenges for public health. Despite great strides in the application of neoadjuvant and adjuvant therapies for rectal and colon cancer patients, each of these treatments is still associated with certain adverse effects and different response rates. Thus, there is an urgent need for identifying novel potential biomarkers that might guide personalized treatments for specific subgroups of patients. However, until now, there are no biomarkers to predict the manifestation of adverse effects and the response to treatment in CRC patients. Herein, we provide a systematic review of epidemiological studies investigating epigenetic biomarkers in CRC patients receiving neoadjuvant or adjuvant therapy, and their potential role for the prediction of outcomes and response to treatment. With this aim in mind, we identified several epigenetic markers in CRC patients who received surgery with adjuvant or neoadjuvant therapy. However, none of them currently has the robustness to be translated into the clinical setting. Thus, more efforts and further large-size prospective studies and/or trials should be encouraged to develop epigenetic biomarker panels for personalized prevention and medicine in CRC cancer.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
5
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
6
|
Küry P, Nath A, Créange A, Dolei A, Marche P, Gold J, Giovannoni G, Hartung HP, Perron H. Human Endogenous Retroviruses in Neurological Diseases. Trends Mol Med 2018; 24:379-394. [PMID: 29551251 PMCID: PMC7185488 DOI: 10.1016/j.molmed.2018.02.007] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
The causes of multiple sclerosis and amyotrophic lateral sclerosis have long remained elusive. A new category of pathogenic components, normally dormant within human genomes, has been identified: human endogenous retroviruses (HERVs). These represent ∼8% of the human genome, and environmental factors have reproducibly been shown to trigger their expression. The resulting production of envelope (Env) proteins from HERV-W and HERV-K appears to engage pathophysiological pathways leading to the pathognomonic features of MS and ALS, respectively. Pathogenic HERV elements may thus provide a missing link in understanding these complex diseases. Moreover, their neutralization may represent a promising strategy to establish novel and more powerful therapeutic approaches.
Collapse
Affiliation(s)
- Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Avindra Nath
- Section of infections of the Nervous System, National Institute of Neurological Diseases and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alain Créange
- Service de Neurologie, Groupe Hospitalier Henri Mondor, Assistance Publique Hopitaux de Paris (APHP), Université Paris Est, Créteil, France
| | - Antonina Dolei
- Department of Virology, University of Sassari, Sassari, Italy
| | - Patrice Marche
- Institute for Advanced Biosciences (IAB), University of Grenoble-Alpes, La Tronche, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1209, La Tronche, France
| | - Julian Gold
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University, London, UK; The Albion Centre, Prince of Wales Hospital, Sydney, Australia
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University, London, UK
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Hervé Perron
- Geneuro, Plan les Ouates, Geneva, Switzerland; University of Lyon, Lyon, France
| |
Collapse
|
7
|
Siomou E, Mitsioni AG, Giapros V, Bouba I, Noutsopoulos D, Georgiou I. Copy-number variation analysis in familial nonsyndromic congenital anomalies of the kidney and urinary tract: Evidence for the causative role of a transposable element-associated genomic rearrangement. Mol Med Rep 2017; 15:3631-3636. [PMID: 28440405 PMCID: PMC5436203 DOI: 10.3892/mmr.2017.6462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
Most congenital anomalies of the kidney and urinary tract (CAKUT) are sporadic, but familial occurrence has been described, suggesting a genetic contribution. Copy-number variations (CNVs) were detected in patients with CAKUT to identify possible novel genomic regions associated with CAKUT. CNVs were investigated in 7 children with CAKUT from three unrelated families using array comparative genomic hybridization: female monozygotic twins with bilateral duplex collecting system/vesicoureteral reflux (VUR)/unilateral renal hypodyspasia (URHD); two male siblings with VUR/URHD; 3 male second cousins, one with bilateral VUR/URHD, one with bilateral VUR and one with ureterovesical junction obstruction (UVJO). Five patients had a normal constitution of CNVs, one had a duplication of 0.2 Mb on the 5q-arm (5q23.3), probably unrelated to CAKUT, and one with UVJO had a 1.4 Mb deletion on the 17q-arm (17q12) which includes a known CAKUT gene, HNF1B. The phenotype of HNF1B deletion was extended including renal magnesium wasting. A higher coverage in transposable elements (TEs) was found in the deleted region compared with the expected density in any random genomic region. Notably, the 5′ breakpoint was mapped within a solo long terminal repeat (LTR) sequence. Moreover, highly similar members of solo LTR and mammalian interspersed repetitive (MIR) elements, as well as nucleotide sequence microhomology were detected at the breakpoint regions. In conclusion, the deletion detected in one patient suggests this genomic imbalance as causative for UVJO. A not very well known phenotype of HNF1B deletion resulting in both low urinary tract malformations and renal wasting of magnesium was described. The high load in TEs of the deleted region, the presence of highly similar elements, and the microhomology found at breakpoint regions may have contributed to the generation of the deletion. CNV analysis could reveal novel causative genomic regions in patients with CAKUT, and further studies in larger cohorts are needed.
Collapse
Affiliation(s)
- Ekaterini Siomou
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45500, Greece
| | - Artemis G Mitsioni
- Laboratory of Medical Genetics and Human Reproduction, Faculty of Medicine, University of Ioannina, Ioannina 45500, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, University Hospital of Ioannina, Ioannina 45500, Greece
| | - Ioanna Bouba
- Laboratory of Medical Genetics and Human Reproduction, Faculty of Medicine, University of Ioannina, Ioannina 45500, Greece
| | - Dimitrios Noutsopoulos
- Laboratory of General Biology, Faculty of Medicine, University of Ioannina, Ioannina 45500, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics and Human Reproduction, Faculty of Medicine, University of Ioannina, Ioannina 45500, Greece
| |
Collapse
|
8
|
Cook PR, Tabor GT. Deciphering fact from artifact when using reporter assays to investigate the roles of host factors on L1 retrotransposition. Mob DNA 2016; 7:23. [PMID: 27895722 PMCID: PMC5120415 DOI: 10.1186/s13100-016-0079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Long INterspersed Element-1 (L1, LINE-1) is the only autonomous mobile DNA element in humans and has generated as much as half of the genome. Due to increasing clinical interest in the roles of L1 in cancer, embryogenesis and neuronal development, it has become a priority to understand L1-host interactions and identify host factors required for its activity. Apropos to this, we recently reported that L1 retrotransposition in HeLa cells requires phosphorylation of the L1 protein ORF1p at motifs targeted by host cell proline-directed protein kinases (PDPKs), which include the family of mitogen-activated protein kinases (MAPKs). Using two engineered L1 reporter assays, we continued our investigation into the roles of MAPKs in L1 activity. RESULTS We found that the MAPK p38δ phosphorylated ORF1p on three of its four PDPK motifs required for L1 activity. In addition, we found that a constitutively active p38δ mutant appeared to promote L1 retrotransposition in HeLa cells. However, despite the consistency of these findings with our earlier work, we identified some technical concerns regarding the experimental methodology. Specifically, we found that exogenous expression of p38δ appeared to affect at least one heterologous promoter in an engineered L1 reporter, as well as generate opposing effects on two different reporters. We also show that two commercially available non-targeting control (NTC) siRNAs elicit drastically different effects on the apparent retrotransposition reported by both L1 assays, which raises concerns about the use of NTCs as normalizing controls. CONCLUSIONS Engineered L1 reporter assays have been invaluable for determining the functions and critical residues of L1 open reading frames, as well as elucidating many aspects of L1 replication. However, our results suggest that caution is required when interpreting data obtained from L1 reporters used in conjunction with exogenous gene expression or siRNA.
Collapse
Affiliation(s)
- Pamela R. Cook
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive, Bethesda, MD 20892 USA
| | - G. Travis Tabor
- National Institute of Child Health and Human Development, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892 USA
| |
Collapse
|
9
|
Pugacheva EM, Teplyakov E, Wu Q, Li J, Chen C, Meng C, Liu J, Robinson S, Loukinov D, Boukaba A, Hutchins AP, Lobanenkov V, Strunnikov A. The cancer-associated CTCFL/BORIS protein targets multiple classes of genomic repeats, with a distinct binding and functional preference for humanoid-specific SVA transposable elements. Epigenetics Chromatin 2016; 9:35. [PMID: 27588042 PMCID: PMC5007689 DOI: 10.1186/s13072-016-0084-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Background A common aberration in cancer is the activation of germline-specific proteins. The DNA-binding proteins among them could generate novel chromatin states, not found in normal cells. The germline-specific transcription factor BORIS/CTCFL, a paralog of chromatin architecture protein CTCF, is often erroneously activated in cancers and rewires the epigenome for the germline-like transcription program. Another common feature of malignancies is the changed expression and epigenetic states of genomic repeats, which could alter the transcription of neighboring genes and cause somatic mutations upon transposition. The role of BORIS in transposable elements and other repeats has never been assessed. Results The investigation of BORIS and CTCF binding to DNA repeats in the K562 cancer cells dependent on BORIS for self-renewal by ChIP-chip and ChIP-seq revealed three classes of occupancy by these proteins: elements cohabited by BORIS and CTCF, CTCF-only bound, or BORIS-only bound. The CTCF-only enrichment is characteristic for evolutionary old and inactive repeat classes, while BORIS and CTCF co-binding predominately occurs at uncharacterized tandem repeats. These repeats form staggered cluster binding sites, which are a prerequisite for CTCF and BORIS co-binding. At the same time, BORIS preferentially occupies a specific subset of the evolutionary young, transcribed, and mobile genomic repeat family, SVA. Unlike CTCF, BORIS prominently binds to the VNTR region of the SVA repeats in vivo. This suggests a role of BORIS in SVA expression regulation. RNA-seq analysis indicates that BORIS largely serves as a repressor of SVA expression, alongside DNA and histone methylation, with the exception of promoter capture by SVA. Conclusions Thus, BORIS directly binds to, and regulates SVA repeats, which are essentially movable CpG islands, via clusters of BORIS binding sites. This finding uncovers a new function of the global germline-specific transcriptional regulator BORIS in regulating and repressing the newest class of transposable elements that are actively transposed in human genome when activated. This function of BORIS in cancer cells is likely a reflection of its roles in the germline. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0084-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Evgeny Teplyakov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Qiongfang Wu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jingjing Li
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Cheng Chen
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Chengcheng Meng
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Jian Liu
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Susan Robinson
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Dmitry Loukinov
- Laboratory of Immunogenetics, NIH, NIAID, Rockville, MD 20852 USA
| | - Abdelhalim Boukaba
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| | - Andrew Paul Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, 518055 Guangdong China
| | | | - Alexander Strunnikov
- Molecular Epigenetics Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, 510530 Guangdong China
| |
Collapse
|
10
|
Pachulska-Wieczorek K, Błaszczyk L, Gumna J, Nishida Y, Saha A, Biesiada M, Garfinkel DJ, Purzycka KJ. Characterizing the functions of Ty1 Gag and the Gag-derived restriction factor p22/p18. Mob Genet Elements 2016; 6:e1154637. [PMID: 27141325 DOI: 10.1080/2159256x.2016.1154637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022] Open
Abstract
The long terminal repeat (LTR) and non-LTR retrotransposons comprise approximately half of the human genome, and we are only beginning to understand their influence on genome function and evolution. The LTR retrotransposon Ty1 is the most abundant mobile genetic element in the S. cerevisiae reference genome. Ty1 replicates via an RNA intermediate and shares several important structural and functional characteristics with retroviruses. However, unlike retroviruses Ty1 retrotransposition is not infectious. Retrotransposons integrations can cause mutations and genome instability. Despite the fact that S. cerevisiae lacks eukaryotic defense mechanisms such as RNAi, they maintain a relatively low copy number of the Ty1 retrotransposon in their genomes. A novel restriction factor derived from the C-terminal half of Gag (p22/p18) and encoded by internally initiated transcript inhibits retrotransposition in a dose-dependent manner. Therefore, Ty1 evolved a specific GAG organization and expression strategy to produce products both essential and antagonistic for retrotransposon movement. In this commentary we discuss our recent research aimed at defining steps of Ty1 replication influenced by p22/p18 with particular emphasis on the nucleic acid chaperone functions carried out by Gag and the restriction factor.
Collapse
Affiliation(s)
- Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology , Poznan, Poland
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Marcin Biesiada
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| |
Collapse
|
11
|
Vijaya Chandra SH, Makhija H, Peter S, Myint Wai CM, Li J, Zhu J, Ren Z, D'Alcontres MS, Siau JW, Chee S, Ghadessy FJ, Dröge P. Conservative site-specific and single-copy transgenesis in human LINE-1 elements. Nucleic Acids Res 2015; 44:e55. [PMID: 26673710 PMCID: PMC4824084 DOI: 10.1093/nar/gkv1345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022] Open
Abstract
Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, term edattH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes.
Collapse
Affiliation(s)
| | - Harshyaa Makhija
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sabrina Peter
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Cho Mar Myint Wai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Jinming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Tonghe GuangZhou 510515, People's Republic of China State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Tonghe, Guangzhou 510515, People's Republic of China
| | - Jindong Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Tonghe GuangZhou 510515, People's Republic of China State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Tonghe, Guangzhou 510515, People's Republic of China
| | - Zhonglu Ren
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Tonghe GuangZhou 510515, People's Republic of China State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Tonghe, Guangzhou 510515, People's Republic of China
| | | | - Jia Wei Siau
- p53Lab, Agency for Science Technology and Research, Singapore 138673
| | - Sharon Chee
- p53Lab, Agency for Science Technology and Research, Singapore 138673
| | | | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
12
|
LINE-1 in cancer: multifaceted functions and potential clinical implications. Genet Med 2015; 18:431-9. [DOI: 10.1038/gim.2015.119] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022] Open
|
13
|
Grandi FC, Rosser JM, Newkirk SJ, Yin J, Jiang X, Xing Z, Whitmore L, Bashir S, Ivics Z, Izsvák Z, Ye P, Yu YE, An W. Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res 2015; 25:1135-46. [PMID: 25995269 PMCID: PMC4509998 DOI: 10.1101/gr.185132.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/19/2015] [Indexed: 11/25/2022]
Abstract
Long interspersed elements (LINEs), through both self-mobilization and trans-mobilization of short interspersed elements and processed pseudogenes, have made an indelible impact on the structure and function of the human genome. One consequence is the creation of new CpG islands (CGIs). In fact, more than half of all CGIs in the genome are associated with repetitive DNA, three-quarters of which are derived from retrotransposons. However, little is known about the epigenetic impact of newly inserted CGIs. We utilized a transgenic LINE-1 mouse model and tracked DNA methylation dynamics of individual germline insertions during mouse development. The retrotransposed GFP marker sequence, a strong CGI, is hypomethylated in male germ cells but hypermethylated in somatic tissues, regardless of genomic location. The GFP marker is similarly methylated when delivered into the genome via the Sleeping Beauty DNA transposon, suggesting that the observed methylation pattern may be independent of the mode of insertion. Comparative analyses between insertion- and non-insertion-containing alleles further reveal a graded influence of the retrotransposed CGI on flanking CpG sites, a phenomenon that we described as "sloping shores." Computational analyses of human and mouse methylomic data at single-base resolution confirm that sloping shores are universal for hypomethylated CGIs in sperm and somatic tissues. Additionally, the slope of a hypomethylated CGI can be affected by closely positioned CGI neighbors. Finally, by tracing sloping shore dynamics through embryonic and germ cell reprogramming, we found evidence of bookmarking, a mechanism that likely determines which CGIs will be eventually hyper- or hypomethylated.
Collapse
Affiliation(s)
- Fiorella C Grandi
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - James M Rosser
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Simon J Newkirk
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA; Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| | - Jun Yin
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Xiaoling Jiang
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Leanne Whitmore
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Sanum Bashir
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Ping Ye
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota 57007, USA
| |
Collapse
|
14
|
Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements 2015; 5:1-7. [PMID: 26442181 DOI: 10.1080/2159256x.2015.1045682] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/17/2023] Open
Abstract
It was long assumed that eukaryotic precursor mRNAs (pre-mRNAs) are almost always spliced to generate a linear mRNA that is subsequently translated to produce a protein. However, it is now clear that thousands of protein-coding genes can be non-canonically spliced to produce circular noncoding RNAs, some of which are expressed at much higher levels than their associated linear mRNAs. How then does the splicing machinery decide whether to generate a linear mRNA or a circular RNA? Recent work has revealed that intronic repetitive elements, including sequences derived from transposons, are critical regulators of this decision. In most cases, circular RNA biogenesis appears to be initiated when complementary sequences from 2 different introns base pair to one another. This brings the splice sites from the intervening exon(s) into close proximity and facilitates the backsplicing event that generates the circular RNA. As many pre-mRNAs contain multiple intronic repeats, distinct circular transcripts can be produced depending on which repeats base pair to one another. Intronic repeats are thus critical regulatory sequences that control the functional output of their host genes, and potentially cause the functions of protein-coding genes to be highly divergent across species.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics; Perelman School of Medicine; University of Pennsylvania ; Philadelphia, PA USA
| |
Collapse
|
15
|
Lexa M, Steflova P, Martinek T, Vorlickova M, Vyskot B, Kejnovsky E. Guanine quadruplexes are formed by specific regions of human transposable elements. BMC Genomics 2014; 15:1032. [PMID: 25431265 PMCID: PMC4407331 DOI: 10.1186/1471-2164-15-1032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 11/23/2022] Open
Abstract
Background Transposable elements form a significant proportion of eukaryotic genomes. Recently, Lexa et al. (Nucleic Acids Res 42:968-978, 2014) reported that plant long terminal repeat (LTR) retrotransposons often contain potential quadruplex sequences (PQSs) in their LTRs and experimentally confirmed their ability to adopt four-stranded DNA conformations. Results Here, we searched for PQSs in human retrotransposons and found that PQSs are specifically localized in the 3’-UTR of LINE-1 elements, in LTRs of HERV elements and are strongly accumulated in specific regions of SVA elements. Circular dichroism spectroscopy confirmed that most PQSs had adopted monomolecular or bimolecular guanine quadruplex structures. Evolutionarily young SVA elements contained more PQSs than older elements and their propensity to form quadruplex DNA was higher. Full-length L1 elements contained more PQSs than truncated elements; the highest proportion of PQSs was found inside transpositionally active L1 elements (PA2 and HS families). Conclusions Conservation of quadruplexes at specific positions of transposable elements implies their importance in their life cycle. The increasing quadruplex presence in evolutionarily young LINE-1 and SVA families makes these elements important contributors toward present genome-wide quadruplex distribution. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1032) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
16
|
Polymorphic L1 retrotransposons are frequently in strong linkage disequilibrium with neighboring SNPs. Gene 2014; 541:55-9. [PMID: 24614499 DOI: 10.1016/j.gene.2014.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/22/2022]
Abstract
L1 retrotransposons have been the major driver of structural variation of the human genome. L1 insertion polymorphism (LIP)-mediated genomic variation can alter the transcriptome and contribute to the divergence of human phenotypes. To assess this possibility, a genome-wide association study (GWAS) including LIPs is required. Toward this ultimate goal, the present study examined linkage disequilibrium between six LIPs and their neighboring single nucleotide polymorphisms (SNPs). Genomic PCR and sequencing of L1-plus and -minus alleles from different donors revealed that all six LIPs were in strong linkage disequilibrium with at least one SNP. In addition, comparison of syntenic regions containing the identified SNP nucleotides was performed among modern humans (L1-plus and -minus alleles), archaic humans and non-human primates, revealing two different evolutionary schemes that might have resulted in the observed strong SNP-LIP linkage disequilibria. This study provides an experimental framework and guidance for a future SNP-LIP integrative GWAS.
Collapse
|
17
|
De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 2013; 5:867-83. [PMID: 24323947 PMCID: PMC3883704 DOI: 10.18632/aging.100621] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/06/2013] [Indexed: 12/15/2022]
Abstract
Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.
Collapse
Affiliation(s)
- Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Center for Genomics and Proteomics, Brown University, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
18
|
Pflieger A, Jaillet J, Petit A, Augé-Gouillou C, Renault S. Target capture during Mos1 transposition. J Biol Chem 2013; 289:100-11. [PMID: 24269942 DOI: 10.1074/jbc.m113.523894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Collapse
Affiliation(s)
- Aude Pflieger
- From the EA 6306 Innovation Moléculaire et Thérapeutique, Université François Rabelais, UFR des Sciences et Techniques, UFR de Pharmacie, 37200 Tours, France
| | | | | | | | | |
Collapse
|