1
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
3
|
Bressan D, Araujo HM. Evolution of the dorsoventral axis in insects: the changing role of Bone Morphogenetic Proteins. CURRENT OPINION IN INSECT SCIENCE 2022; 49:1-7. [PMID: 34607082 DOI: 10.1016/j.cois.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Embryonic dorsal-ventral (DV) patterning by Bone Morphogenetic Proteins (BMPs) is a conserved feature of Bilateria, based on graded BMP activity set up by diffusible BMP ligands and Chordin/Sog antagonists. In the fly Drosophila melanogaster BMP function is secondary to patterning by the Toll pathway, suggesting a more restricted role for BMPs in insects. With widespread genome sequencing technologies allied to functional analysis in a growing number of species, recent work has shown that BMP's role in DV patterning relative to Toll varies among insect orders. Further, the role of BMP antagonists to set up BMP gradients is also greatly diversified. Here we review the recent findings concerning the role of BMP in the DV patterning of insects and address the potential aspects that may have co-evolved with BMPs to attain this functional divergence.
Collapse
Affiliation(s)
- Daniel Bressan
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Marcolla Araujo
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021; 18:45. [PMID: 34600566 PMCID: PMC8487547 DOI: 10.1186/s12987-021-00277-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
Collapse
Affiliation(s)
- Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Madamanchi A, Mullins MC, Umulis DM. Diversity and robustness of bone morphogenetic protein pattern formation. Development 2021; 148:dev192344. [PMID: 33795238 PMCID: PMC8034876 DOI: 10.1242/dev.192344] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pattern formation by bone morphogenetic proteins (BMPs) demonstrates remarkable plasticity and utility in several contexts, such as early embryonic development, tissue patterning and the maintenance of stem cell niches. BMPs pattern tissues over many temporal and spatial scales: BMP gradients as short as 1-2 cell diameters maintain the stem cell niche of the Drosophila germarium over a 24-h cycle, and BMP gradients of several hundred microns establish dorsal-ventral tissue specification in Drosophila, zebrafish and Xenopus embryos in timescales between 30 min and several hours. The mechanisms that shape BMP signaling gradients are also incredibly diverse. Although ligand diffusion plays a dominant role in forming the gradient, a cast of diffusible and non-diffusible regulators modulate gradient formation and confer robustness, including scale invariance and adaptability to perturbations in gene expression and growth. In this Review, we document the diverse ways that BMP gradients are formed and refined, and we identify the core principles that they share to achieve reliable performance.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Polytechnic Institute, Purdue University, West Lafayette, IN 47907, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Umulis
- Agricultural and Biological Engineering. Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Spierer AN, Mossman JA, Smith SP, Crawford L, Ramachandran S, Rand DM. Natural variation in the regulation of neurodevelopmental genes modifies flight performance in Drosophila. PLoS Genet 2021; 17:e1008887. [PMID: 33735180 PMCID: PMC7971549 DOI: 10.1371/journal.pgen.1008887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
The winged insects of the order Diptera are colloquially named for their most recognizable phenotype: flight. These insects rely on flight for a number of important life history traits, such as dispersal, foraging, and courtship. Despite the importance of flight, relatively little is known about the genetic architecture of flight performance. Accordingly, we sought to uncover the genetic modifiers of flight using a measure of flies’ reaction and response to an abrupt drop in a vertical flight column. We conducted a genome wide association study (GWAS) using 197 of the Drosophila Genetic Reference Panel (DGRP) lines, and identified a combination of additive and marginal variants, epistatic interactions, whole genes, and enrichment across interaction networks. Egfr, a highly pleiotropic developmental gene, was among the most significant additive variants identified. We functionally validated 13 of the additive candidate genes’ (Adgf-A/Adgf-A2/CG32181, bru1, CadN, flapper (CG11073), CG15236, flippy (CG9766), CREG, Dscam4, form3, fry, Lasp/CG9692, Pde6, Snoo), and introduce a novel approach to whole gene significance screens: PEGASUS_flies. Additionally, we identified ppk23, an Acid Sensing Ion Channel (ASIC) homolog, as an important hub for epistatic interactions. We propose a model that suggests genetic modifiers of wing and muscle morphology, nervous system development and function, BMP signaling, sexually dimorphic neural wiring, and gene regulation are all important for the observed differences flight performance in a natural population. Additionally, these results represent a snapshot of the genetic modifiers affecting drop-response flight performance in Drosophila, with implications for other insects. Insect flight is a widely recognizable phenotype of many winged insects, hence the name: flies. While fruit flies, or Drosophila melanogaster, are a genetically tractable model, flight performance is a highly integrative phenotype, and therefore challenging to identify comprehensively which genetic modifiers contribute to its genetic architecture. Accordingly, we screened 197 Drosophila Genetic Reference Panel lines for their ability to react and respond to an abrupt drop. Using several computational approaches, we identified additive, marginal, and epistatic variants, as well as whole genes and altered sub-networks of gene-gene and protein-protein interaction networks that contribute to variation in flight performance. More generally, we demonstrate the benefits of employing multiple methodologies to elucidate the genetic architecture of complex traits. Many variants and genes mapped to regions of the genome that affect neurodevelopment, wing and muscle development, and regulation of gene expression. We also introduce PEGASUS_flies, a Drosophila-adapted version of the PEGASUS platform first used in human studies, to infer gene-level significance of association based on the gene’s distribution of individual variant P-values. Our results contribute to the debate over the relative importance of individual, additive factors and epistatic, or higher order, interactions, in the mapping of genotype to phenotype.
Collapse
Affiliation(s)
- Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Jim A Mossman
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samuel Pattillo Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Microsoft Research New England, Cambridge, Massachusetts, United States of America
| | - Sohini Ramachandran
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
7
|
Schloop AE, Carrell-Noel S, Friedman J, Thomas A, Reeves GT. Mechanism and implications of morphogen shuttling: Lessons learned from dorsal and Cactus in Drosophila. Dev Biol 2020; 461:13-18. [PMID: 31987808 PMCID: PMC7513736 DOI: 10.1016/j.ydbio.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/24/2022]
Abstract
In a developing animal, morphogen gradients act to pattern tissues into distinct domains of cell types. However, despite their prevalence in development, morphogen gradient formation is a matter of debate. In our recent publication, we showed that the Dorsal/NF-κB morphogen gradient, which patterns the DV axis of the early Drosophila embryo, is partially established by a mechanism of facilitated diffusion. This mechanism, also known as "shuttling," occurs when a binding partner of the morphogen facilitates the diffusion of the morphogen, allowing it to accumulate at a given site. In this case, the inhibitor Cactus/IκB facilitates the diffusion of Dorsal/NF-κB. In the fly embryo, we used computation and experiment to not only show that shuttling occurs in the embryo, but also that it enables the viability of embryos that inherit only one copy of dorsal maternally. In this commentary, we further discuss our evidence behind the shuttling mechanism, the previous literature data explained by the mechanism, and how it may also be critical for robustness of development. Finally, we briefly provide additional experimental data pointing toward an interaction between Dorsal and BMP signaling that is likely affected by shuttling.
Collapse
Affiliation(s)
| | - Sophia Carrell-Noel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jeramey Friedman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Alexander Thomas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
8
|
Schloop AE, Bandodkar PU, Reeves GT. Formation, interpretation, and regulation of the Drosophila Dorsal/NF-κB gradient. Curr Top Dev Biol 2019; 137:143-191. [PMID: 32143742 DOI: 10.1016/bs.ctdb.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The morphogen gradient of the transcription factor Dorsal in the early Drosophila embryo has become one of the most widely studied tissue patterning systems. Dorsal is a Drosophila homolog of mammalian NF-κB and patterns the dorsal-ventral axis of the blastoderm embryo into several tissue types by spatially regulating upwards of 100 zygotic genes. Recent studies using fluorescence microscopy and live imaging have quantified the Dorsal gradient and its target genes, which has paved the way for mechanistic modeling of the gradient. In this review, we describe the mechanisms behind the initiation of the Dorsal gradient and its regulation of target genes. The main focus of the review is a discussion of quantitative and computational studies of the Dl gradient system, including regulation of the Dl gradient. We conclude with a discussion of potential future directions.
Collapse
Affiliation(s)
- Allison E Schloop
- Genetics Program, North Carolina State University, Raleigh, NC, United States
| | - Prasad U Bandodkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States
| | - Gregory T Reeves
- Genetics Program, North Carolina State University, Raleigh, NC, United States; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
9
|
Hoover KM, Gratz SJ, Qi N, Herrmann KA, Liu Y, Perry-Richardson JJ, Vanderzalm PJ, O'Connor-Giles KM, Broihier HT. The calcium channel subunit α 2δ-3 organizes synapses via an activity-dependent and autocrine BMP signaling pathway. Nat Commun 2019; 10:5575. [PMID: 31811118 PMCID: PMC6898181 DOI: 10.1038/s41467-019-13165-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
Synapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling relies on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of an activity-dependent autocrine Bone Morphogenetic Protein (BMP) signaling pathway at the Drosophila neuromuscular junction (NMJ). α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for an autocrine BMP signal, suggesting a mechanistic framework for understanding α2δ's conserved role in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state for modulating both synapse structure and function.
Collapse
Affiliation(s)
- Kendall M Hoover
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, RI, 02912, USA
| | - Nova Qi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kelsey A Herrmann
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yizhou Liu
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jahci J Perry-Richardson
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Pamela J Vanderzalm
- Department of Biology, John Carroll University, University Heights, OH, 44118, USA
| | | | - Heather T Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
10
|
Sohr A, Du L, Roy S. Ex vivo Drosophila Wing Imaginal Disc Culture and Furin Inhibitor Assay. Bio Protoc 2019; 9:e3336. [PMID: 33654841 PMCID: PMC7854222 DOI: 10.21769/bioprotoc.3336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 11/02/2022] Open
Abstract
Furin is an evolutionarily conserved proprotein convertase (PC) family enzyme with a broad range of substrates that are essential for developmental, homeostatic, and disease pathways. Classical genetic approaches and in vitro biochemical or cell biological assays identified that precursor forms of most growth factor family proteins are processed by Furin. To quantitatively assess the potential role of Furin in cleaving and modulating intercellular dispersion of a Drosophila signaling protein, we developed a simple assay by combining genetics, ex vivo organ culture, pharmacological treatment, and imaging analyses. The protocol herein describes how to ex vivo culture Drosophila wing imaginal discs expressing a fluorescently tagged Drosophila Fibroblast Growth Factor (FGF, Branchless/Bnl) over a long period of time in the presence of Furin inhibitors and monitor the cleavage and intercellular dispersion of the truncated Bnl parts using microscopy. Although the assay described here is for assessing the effect of Furin inhibition on Bnl cleavage in the Drosophila larval wing imaginal disc, the principle and methodology can easily be adopted for any other signals, tissue systems, or organisms. This strategy and protocol provide an assay for examining Furin activity on a specific substrate by directly visualizing the spatiotemporal distribution of its truncated parts in an ex vivo-cultured organ.
Collapse
Affiliation(s)
- Alex Sohr
- Department of Cell Biology and Molecular Genetics; University of Maryland, College Park, MD 20742, USA
| | - Lijuan Du
- Department of Cell Biology and Molecular Genetics; University of Maryland, College Park, MD 20742, USA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics; University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Sohr A, Du L, Wang R, Lin L, Roy S. Drosophila FGF cleavage is required for efficient intracellular sorting and intercellular dispersal. J Cell Biol 2019; 218:1653-1669. [PMID: 30808704 PMCID: PMC6504889 DOI: 10.1083/jcb.201810138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/15/2023] Open
Abstract
Bnl controls tracheal development in Drosophila, but it is unclear how this fibroblast growth factor is prepared for tissue-specific dispersal. Sohr et al. find that Furin1 cleaves Bnl in the Golgi, which polarizes its sorting to the basal surface of the source cells and determines its range of cytoneme-mediated intercellular dispersion, signaling, and branching morphogenesis. How morphogenetic signals are prepared for intercellular dispersal and signaling is fundamental to the understanding of tissue morphogenesis. We discovered an intracellular mechanism that prepares Drosophila melanogaster FGF Branchless (Bnl) for cytoneme-mediated intercellular dispersal during the development of the larval Air-Sac-Primordium (ASP). Wing-disc cells express Bnl as a proprotein that is cleaved by Furin1 in the Golgi. Truncated Bnl sorts asymmetrically to the basal surface, where it is received by cytonemes that extend from the recipient ASP cells. Uncleavable mutant Bnl has signaling activity but is mistargeted to the apical side, reducing its bioavailability. Since Bnl signaling levels feedback control cytoneme production in the ASP, the reduced availability of mutant Bnl on the source basal surface decreases ASP cytoneme numbers, leading to a reduced range of signal/signaling gradient and impaired ASP growth. Thus, enzymatic cleavage ensures polarized intracellular sorting and availability of Bnl to its signaling site, thereby determining its tissue-specific intercellular dispersal and signaling range.
Collapse
Affiliation(s)
- Alex Sohr
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Lijuan Du
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Ruofan Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Li Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Sougata Roy
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| |
Collapse
|
12
|
Wang Q, Han TH, Nguyen P, Jarnik M, Serpe M. Tenectin recruits integrin to stabilize bouton architecture and regulate vesicle release at the Drosophila neuromuscular junction. eLife 2018; 7:35518. [PMID: 29901439 PMCID: PMC6040883 DOI: 10.7554/elife.35518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/13/2018] [Indexed: 11/15/2022] Open
Abstract
Assembly, maintenance and function of synaptic junctions depend on extracellular matrix (ECM) proteins and their receptors. Here we report that Tenectin (Tnc), a Mucin-type protein with RGD motifs, is an ECM component required for the structural and functional integrity of synaptic specializations at the neuromuscular junction (NMJ) in Drosophila. Using genetics, biochemistry, electrophysiology, histology and electron microscopy, we show that Tnc is secreted from motor neurons and striated muscles and accumulates in the synaptic cleft. Tnc selectively recruits αPS2/βPS integrin at synaptic terminals, but only the cis Tnc/integrin complexes appear to be biologically active. These complexes have distinct pre- and postsynaptic functions, mediated at least in part through the local engagement of the spectrin-based membrane skeleton: the presynaptic complexes control neurotransmitter release, while postsynaptic complexes ensure the size and architectural integrity of synaptic boutons. Our study reveals an unprecedented role for integrin in the synaptic recruitment of spectrin-based membrane skeleton. Nerve cells or neurons can communicate with each other by releasing chemical messengers into the gap between them, the synapse. Both neurons and synapses are surrounded by a network of proteins called the extracellular matrix, which anchors, protects and supports the synapse. The matrix also helps to regulate the dynamic communication across the synapses and consequently neurons. Little is known about the proteins of the extracellular matrix, in particular about the ones involved in structural support. This is especially important for the so-called neuromuscular junctions, where neurons stimulate muscle contraction and trigger vigorous movement. Receptor proteins on cell surfaces, such as integrins, can bind to the extracellular matrix proteins to anchor the cells and are important for all cell junctions, including synaptic junctions. But because of their many essential roles during development, it was unclear how integrins modulate the activity of the synapse. To investigate this further, Wang et al. studied the neuromuscular junctions of fruit flies. The experiments revealed that both muscle and neurons secrete a large protein called Tenectin, which accumulates into the small space between the neuron and the muscle, the synaptic cleft. This protein can bind to integrin and is necessary to support the neuromuscular junction structurally and functionally. Wang et al. discovered that Tenectin works by gathering integrins on the surface of the neuron and the muscle. In the neuron, Tenectin forms complexes with integrin to regulate the release of neurotransmitters. In the muscle, the complexes provide support to the synaptic structures. However, when Tenectin was experimentally removed, it only disrupted the integrins at the neuromuscular junction, without affecting integrins in other regions of the cells, such as the site where the muscle uses integrins to attach to the tendon. Moreover, without Tenectin an important intracellular scaffolding meshwork that lines up and reinforces cell membranes was no longer organized properly at the synapse. A next step will be to identify the missing components between Tenectin/integrin complexes on the surface of neurons and the neurotransmitter release machinery inside the cells. The extracellular matrix and its receptors play fundamental roles in the development and function of the nervous system. A better knowledge of the underlying mechanisms will help us to better understand the complex interplay between the synapse and the extracellular matrix.
Collapse
Affiliation(s)
- Qi Wang
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Michal Jarnik
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
13
|
Kwan CW, Gavin-Smyth J, Ferguson EL, Schmidt-Ott U. Functional evolution of a morphogenetic gradient. eLife 2016; 5:e20894. [PMID: 28005004 PMCID: PMC5224919 DOI: 10.7554/elife.20894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) pattern the dorsal-ventral axis of bilaterian embryos; however, their roles in the evolution of body plan are largely unknown. We examined their functional evolution in fly embryos. BMP signaling specifies two extraembryonic tissues, the serosa and amnion, in basal-branching flies such as Megaselia abdita, but only one, the amnioserosa, in Drosophila melanogaster. The BMP signaling dynamics are similar in both species until the beginning of gastrulation, when BMP signaling broadens and intensifies at the edge of the germ rudiment in Megaselia, while remaining static in Drosophila. Here we show that the differences in gradient dynamics and tissue specification result from evolutionary changes in the gene regulatory network that controls the activity of a positive feedback circuit on BMP signaling, involving the tumor necrosis factor alpha homolog eiger. These data illustrate an evolutionary mechanism by which spatiotemporal changes in morphogen gradients can guide tissue complexity.
Collapse
Affiliation(s)
- Chun Wai Kwan
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| | - Jackie Gavin-Smyth
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Edwin L Ferguson
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
| |
Collapse
|
14
|
Norman M, Vuilleumier R, Springhorn A, Gawlik J, Pyrowolakis G. Pentagone internalises glypicans to fine-tune multiple signalling pathways. eLife 2016; 5. [PMID: 27269283 PMCID: PMC4924993 DOI: 10.7554/elife.13301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated.
Collapse
Affiliation(s)
- Mark Norman
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Robin Vuilleumier
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Alexander Springhorn
- Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Jennifer Gawlik
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - George Pyrowolakis
- Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Breisgau, Germany.,Institute for Biology I, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| |
Collapse
|
15
|
Kim YJ, Igiesuorobo O, Ramos CI, Bao H, Zhang B, Serpe M. Prodomain removal enables neto to stabilize glutamate receptors at the Drosophila neuromuscular junction. PLoS Genet 2015; 11:e1004988. [PMID: 25723514 PMCID: PMC4344203 DOI: 10.1371/journal.pgen.1004988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/06/2015] [Indexed: 11/24/2022] Open
Abstract
Stabilization of neurotransmitter receptors at postsynaptic specializations is a key step in the assembly of functional synapses. Drosophila Neto (Neuropillin and Tolloid-like protein) is an essential auxiliary subunit of ionotropic glutamate receptor (iGluR) complexes required for the iGluRs clustering at the neuromuscular junction (NMJ). Here we show that optimal levels of Neto are crucial for stabilization of iGluRs at synaptic sites and proper NMJ development. Genetic manipulations of Neto levels shifted iGluRs distribution to extrajunctional locations. Perturbations in Neto levels also produced small NMJs with reduced synaptic transmission, but only Neto-depleted NMJs showed diminished postsynaptic components. Drosophila Neto contains an inhibitory prodomain that is processed by Furin1-mediated limited proteolysis. neto null mutants rescued with a Neto variant that cannot be processed have severely impaired NMJs and reduced iGluRs synaptic clusters. Unprocessed Neto retains the ability to engage iGluRs in vivo and to form complexes with normal synaptic transmission. However, Neto prodomain must be removed to enable iGluRs synaptic stabilization and proper postsynaptic differentiation. Synapse development is initiated by genetic programs, but is coordinated by neuronal activity, by communication between the pre- and postsynaptic compartments, and by cellular signals that integrate the status of the whole organisms and its developmental progression. The molecular mechanisms underlining these processes are poorly understood. In particular, how neurotransmitter receptors are recruited and stabilized at central synapses remain the subject of intense research. The Drosophila NMJ is a glutamatergic synapse similar in composition and physiology with mammalian central excitatory synapses. Like mammals, Drosophila utilizes auxiliary subunit(s) to modulate the formation and function of glutamatergic synapses. We have previously reported that Neto is an auxiliary protein essential for functional glutamate receptors and for organization of postsynaptic specializations. Here we report that synapse assembly and NMJ development are exquisitely sensitive to postsynaptic Neto levels. Furthermore, we show that Neto activity is controlled by Furin-type proteases, which regulate the processing and maturation of many developmentally important proteins, from growth factors and neuropeptides to extracellular matrix components. Such concerted control may serve to coordinate synapse assembly with synapse growth and developmental progression.
Collapse
Affiliation(s)
- Young-Jun Kim
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Oghomwen Igiesuorobo
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Cathy I. Ramos
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Hong Bao
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, NICHD, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Winstanley J, Sawala A, Baldock C, Ashe HL. Synthetic enzyme-substrate tethering obviates the Tolloid-ECM interaction during Drosophila BMP gradient formation. eLife 2015; 4. [PMID: 25642644 PMCID: PMC4337604 DOI: 10.7554/elife.05508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
Abstract
Members of the Tolloid family of metalloproteinases liberate BMPs from inhibitory complexes to regulate BMP gradient formation during embryonic dorsal-ventral axis patterning. Here, we determine mechanistically how Tolloid activity is regulated by its non-catalytic CUB domains in the Drosophila embryo. We show that Tolloid, via its N-terminal CUB domains, interacts with Collagen IV, which enhances Tolloid activity towards its substrate Sog, and facilitates Tsg-dependent stimulation of cleavage. In contrast, the two most C-terminal Tld CUB domains mediate Sog interaction to facilitate its processing as, based on our structural data, Tolloid curvature positions bound Sog in proximity to the protease domain. Having ascribed functions to the Tolloid non-catalytic domains, we recapitulate embryonic BMP gradient formation in their absence, by artificially tethering the Tld protease domain to Sog. Our studies highlight how the bipartite function of Tolloid CUB domains, in substrate and ECM interactions, fine-tune protease activity to a particular developmental context. DOI:http://dx.doi.org/10.7554/eLife.05508.001 The body of an animal is a highly organised structure of tissues and organs that contain cells with specialised roles. To achieve this level of organisation, it is important that the cells in the embryo know their location and receive the correct instructions on how to develop, when to divide or move. Many animals are roughly symmetrical about an imaginary line that runs from their head to their tail; a developing embryo can provide its cells with information about their position along this head-to-tail axis and the axis that runs from its front to its back. Setting up the front-to-back axis in the embryo involves a family of proteins called the bone morphogenetic proteins (or BMPs). These proteins can bind to other proteins that act as signals to provide instructions to cells. However, many of the BMPs are unable to perform this job because they are trapped by inhibitory molecules that bind to them instead. Enzymes belonging to the Tolloid family can break down these inhibitors to release the BMPs. Together, the inhibitors and Tolloid enzymes create a gradient of BMP activity across the embryo. The side of the embryo with the highest levels of active BMPs sets the position of the back of the body, while the opposite side—which has the lowest levels of active BMPs—becomes the front. However, it is not clear how Tolloid is controlled to create the BMP gradient. Different parts of the Tolloid enzyme have different roles; one portion of the enzyme breaks down the inhibitory molecules, and there are also several so-called ‘non-catalytic domains’. Winstanley et al. used a combination of approaches to study how Tolloid is controlled in fruit fly embryos. The experiments show that two non-catalytic domains at one end of Tolloid help the enzyme to bind to the inhibitory molecules. At the other end of the Tolloid enzyme, another non-catalytic domain can bind to a structural protein called Collagen IV. This enhances the ability of the enzyme to break down the inhibitory molecules and release the BMPs. These findings reveal how Tolloid's non-catalytic domains can fine-tune the activity of this enzyme to create the gradient of BMP activity that is needed to set the front-to-back direction in animal embryos. Future studies will focus on identifying other proteins that bind to the non-catalytic domains of Tolloid in order to further control its activity during development. DOI:http://dx.doi.org/10.7554/eLife.05508.002
Collapse
Affiliation(s)
- Jennifer Winstanley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annick Sawala
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Hilary L Ashe
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Akiyama T, Gibson MC. Morphogen transport: theoretical and experimental controversies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:99-112. [PMID: 25581550 DOI: 10.1002/wdev.167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023]
Abstract
UNLABELLED According to morphogen gradient theory, extracellular ligands produced from a localized source convey positional information to receiving cells by signaling in a concentration-dependent manner. How do morphogens create concentration gradients to establish positional information in developing tissues? Surprisingly, the answer to this central question remains largely unknown. During development, a relatively small number of morphogens are reiteratively deployed to ensure normal embryogenesis and organogenesis. Thus, the intracellular processing and extracellular transport of morphogens are tightly regulated in a tissue-specific manner. Over the past few decades, diverse experimental and theoretical approaches have led to numerous conflicting models for gradient formation. In this review, we summarize the experimental evidence for each model and discuss potential future directions for studies of morphogen gradients. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
18
|
Peterson AJ, O'Connor MB. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014; 68:183-93. [PMID: 24680699 PMCID: PMC4057889 DOI: 10.1016/j.ymeth.2014.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
The TGF-β pathway is an evolutionarily conserved signal transduction module that mediates diverse biological processes in animals. In Drosophila, both the BMP and Activin branches are required for viability. Studies rooted in classical and molecular genetic approaches continue to uncover new developmental roles for TGF-β signaling. We present an overview of the secreted ligands, transmembrane receptors and cellular Smad transducer proteins that compose the core pathway in Drosophila. An assortment of tools have been developed to conduct tissue-specific loss- and gain-of-function experiments for these pathway components. We discuss the deployment of these reagents, with an emphasis on appropriate usage and limitations of the available tools. Throughout, we note reagents that are in need of further improvement or development, and signaling features requiring further study. A general theme is that comparison of phenotypes for ligands, receptors, and Smads can be used to map tissue interactions, and to separate canonical and non-canonical signaling activities. Core TGF-β signaling components are subject to multiple layers of regulation, and are coupled to context-specific inputs and outputs. In addition to fleshing out how TGF-β signaling serves the fruit fly, we anticipate that future studies will uncover new regulatory nodes and modes and will continue to advance paradigms for how TGF-β signaling regulates general developmental processes.
Collapse
Affiliation(s)
- Aidan J Peterson
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States
| | - Michael B O'Connor
- Department of Genetics, Cell Biology & Development, 6-160 Jackson Hall, 321 Church St SE, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
19
|
Kopf J, Paarmann P, Hiepen C, Horbelt D, Knaus P. BMP growth factor signaling in a biomechanical context. Biofactors 2014; 40:171-87. [PMID: 24123658 DOI: 10.1002/biof.1137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/07/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are members of the transforming growth factor-β superfamily of secreted polypeptide growth factors and are important regulators in a multitude of cellular processes. To ensure the precise and balanced propagation of their pleiotropic signaling responses, BMPs and their corresponding signaling pathways are subject to tight control. A large variety of regulatory mechanisms throughout different biological levels combines into a complex network and provides the basis for physiological BMP function. This regulatory network not only includes biochemical factors but also mechanical cues. Both BMP signaling and mechanotransduction pathways are tightly interconnected and represent an elaborate signaling network active during development but also during organ homeostasis. Moreover, its dysregulation is associated with a number of human pathologies. A more detailed understanding of this crosstalk in respect to molecular interactions will be indispensable in the future, in particular to understand BMP-related diseases as well as with regard to an efficient clinical application of BMP ligands.
Collapse
Affiliation(s)
- Jessica Kopf
- Institute for Chemistry/Biochemistry, Freie Universität, Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Constam DB. Regulation of TGFβ and related signals by precursor processing. Semin Cell Dev Biol 2014; 32:85-97. [PMID: 24508081 DOI: 10.1016/j.semcdb.2014.01.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
Secreted cytokines of the TGFβ family are found in all multicellular organisms and implicated in regulating fundamental cell behaviors such as proliferation, differentiation, migration and survival. Signal transduction involves complexes of specific type I and II receptor kinases that induce the nuclear translocation of Smad transcription factors to regulate target genes. Ligands of the BMP and Nodal subgroups act at a distance to specify distinct cell fates in a concentration-dependent manner. These signaling gradients are shaped by multiple factors, including proteases of the proprotein convertase (PC) family that hydrolyze one or several peptide bonds between an N-terminal prodomain and the C-terminal domain that forms the mature ligand. This review summarizes information on the proteolytic processing of TGFβ and related precursors, and its spatiotemporal regulation by PCs during development and various diseases, including cancer. Available evidence suggests that the unmasking of receptor binding epitopes of TGFβ is only one (and in some cases a non-essential) function of precursor processing. Future studies should consider the impact of proteolytic maturation on protein localization, trafficking and turnover in cells and in the extracellular space.
Collapse
Affiliation(s)
- Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
21
|
Out of balance--systemic iron homeostasis in iron-related disorders. Nutrients 2013; 5:3034-61. [PMID: 23917168 PMCID: PMC3775241 DOI: 10.3390/nu5083034] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia) affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism.
Collapse
|