1
|
Wytock TP, Motter AE. Cell reprogramming design by transfer learning of functional transcriptional networks. Proc Natl Acad Sci U S A 2024; 121:e2312942121. [PMID: 38437548 PMCID: PMC10945810 DOI: 10.1073/pnas.2312942121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.
Collapse
Affiliation(s)
- Thomas P. Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Center for Network Dynamics, Northwestern University, Evanston, IL60208
| | - Adilson E. Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, IL60208
- Center for Network Dynamics, Northwestern University, Evanston, IL60208
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Evanston, IL60208
| |
Collapse
|
2
|
Wytock TP, Motter AE. Cell reprogramming design by transfer learning of functional transcriptional networks. ARXIV 2024:arXiv:2403.04837v1. [PMID: 38495570 PMCID: PMC10942484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cell behavior. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates to generate a model of the functional network dynamics that can be transferred to specific reprogramming goals. The approach additively combines transcriptional responses to gene perturbations (single-gene knockdowns and overexpressions) to minimize the transcriptional difference between a given pair of initial and target states. We demonstrate the flexibility of our approach by applying it to a microarray dataset comprising over 9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of over 10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an average AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases as the developmental relatedness decreases. We also show that fewer genes are needed to progress along developmental paths than to regress. Together, these findings establish a proof-of-concept for our approach to computationally design control strategies and demonstrate their ability to provide insights into the dynamics of gene regulatory networks.
Collapse
Affiliation(s)
- Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Center for Network Dynamics, Northwestern University, Evanston, Illinois 60208, USA
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Center for Network Dynamics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA
- National Institute for Theory and Mathematics in Biology, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
Wang SH, Hao J, Zhang C, Duan FF, Chiu YT, Shi M, Huang X, Yang J, Cao H, Wang Y. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1985-1997. [PMID: 35391627 DOI: 10.1007/s11427-021-2076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The pluripotent state of embryonic stem cells (ESCs) is regulated by a sophisticated network of transcription factors. High expression of KLF17 has recently been identified as a hallmark of naive state of human ESCs (hESCs). However, the functional role of KLF17 in naive state is not clear. Here, by employing various gain and loss-of-function approaches, we demonstrate that KLF17 is essential for the maintenance of naive state and promotes the primed to naive state transition in hESCs. Mechanistically, we identify MAPK3 and ZIC2 as two direct targets repressed by KLF17. Overexpression of MAPK3 or ZIC2 partially blocks KLF17 from promoting the naive pluripotency. Furthermore, we find that human and mouse homologs of KLF17 retain conserved functions in promoting naive pluripotency of both species. Finally, we show that Klf17 may be essential for early embryo development in mouse. These findings demonstrate the important and conserved function of KLF17 in promoting naive pluripotency and reveal two essential transcriptional targets of KLF17 that underlie its function.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jing Hao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chao Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Fei-Fei Duan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ya-Tzu Chiu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
5
|
An introduction to the special issue on: "Naïve pluripotency in non-rodent species: From embryos to pluripotent stem cell lines". Exp Cell Res 2020; 395:112147. [PMID: 32540402 DOI: 10.1016/j.yexcr.2020.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Warrier S, Taelman J, Tilleman L, Van der Jeught M, Duggal G, Lierman S, Popovic M, Van Soom A, Peelman L, Van Nieuwerburgh F, Deforce D, Chuva de Sousa Lopes SM, De Sutter P, Heindryckx B. Transcriptional landscape changes during human embryonic stem cell derivation. Mol Hum Reprod 2019; 24:543-555. [PMID: 30239859 DOI: 10.1093/molehr/gay039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/14/2018] [Indexed: 01/06/2023] Open
Abstract
STUDY QUESTION What are the transcriptional changes occurring during the human embryonic stem cell (hESC) derivation process, from the inner cell mass (ICM) to post-ICM intermediate stage (PICMI) to hESC stage, that have downstream effects on pluripotency states and differentiation? SUMMARY ANSWER We reveal that although the PICMI is transcriptionally similar to the hESC profile and distinct from ICM, it exhibits upregulation of primordial germ cell (PGC) markers, dependence on leukemia inhibitory factor (LIF) signaling, upregulation of naïve pluripotency-specific signaling networks and appears to be an intermediate switching point from naïve to primed pluripotency. WHAT IS KNOWN ALREADY It is currently known that the PICMI exhibits markers of early and late-epiblast stage. It is suggested that hESCs acquire primed pluripotency features due to the upregulation of post-implantation genes in the PICMI which renders them predisposed towards differentiation cues. Despite this current knowledge, the transcriptional landscape changes during hESC derivation from ICM to hESC and the effect of PICMI on pluripotent state is still not well defined. STUDY DESIGN, SIZE, DURATION To gain insight into the signaling mechanisms that may govern the ICM to PICMI to hESC transition, comparative RNA sequencing (RNA-seq) analysis was performed on preimplantation ICMs, PICMIs and hESCs in biological and technical triplicates (n = 3). PARTICIPANTS/MATERIALS, SETTING, AND METHODS Primed hESCs (XX) were maintained in feeder-free culture conditions on Matrigel for two passages and approximately 50 cells were collected in biological and technical triplicates (n = 3). For ICM sample collection, Day 3, frozen-thawed human embryos were cultured up to day five blastocyst stage and only good quality blastocysts were subjected to laser-assisted micromanipulation for ICM collection (n = 3). Next, day six expanded blastocysts were cultured on mouse embryonic fibroblasts and manual dissection was performed on the PICMI outgrowths between post-plating Day 6 and Day 10 (n = 3). Sequencing of these samples was performed on NextSeq500 and statistical analysis was performed using edgeR (false discovery rate (FDR) < 0.05). MAIN RESULTS AND THE ROLE OF CHANCE Comparative RNA-seq data analysis revealed that 634 and 560 protein-coding genes were significantly up and downregulated in hESCs compared to ICM (FDR < 0.05), respectively. Upon ICM to PICMI transition, 471 genes were expressed significantly higher in the PICMI compared to ICM, while 296 genes were elevated in the ICM alone (FDR < 0.05). Principle component analysis showed that the ICM was completely distinct from the PICMI and hESCs while the latter two clustered in close proximity to each other. Increased expression of E-CADHERIN1 (CDH1) in ICM and intermediate levels in the PICMI was observed, while CDH2 was higher in hESCs, suggesting a role of extracellular matrix components in facilitating pluripotency transition during hESC derivation. The PICMI also showed regulation of naïve-specific LIF and bone morphogenetic protein signaling, differential regulation of primed pluripotency-specific fibroblast growth factor and NODAL signaling pathway components, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway (PI3K/AKT/mTORC), as well as predisposition towards the germ cell lineage, further confirmed by gene ontology analysis. Hence, the data suggest that the PICMI may serve as an intermediate pluripotency stage which, when subjected to an appropriate culture niche, could aid in enhancing naïve hESC derivation and germ cell differentiation efficiency. LARGE-SCALE DATA Gene Expression Omnibus (GEO) Accession number GSE119378. LIMITATIONS, REASONS FOR CAUTION Owing to the limitation in sample availability, the sex of ICM and PICMI have not been taken into consideration. Obtaining cells from the ICM and maintaining them in culture is not feasible as it will hamper the formation of PICMI and hESC derivation. Single-cell quantitative real-time PCR on low ICM and PICMI cell numbers, although challenging due to limited availability of human embryos, will be advantageous to further corroborate the RNA-seq data on transcriptional changes during hESC derivation process. WIDER IMPLICATIONS OF THE FINDINGS We elucidate the dynamics of transcriptional network changes from the naïve ICM to the intermediate PICMI stage and finally the primed hESC lines. We provide an in-depth understanding of the PICMI and its role in conferring the type of pluripotent state which may have important downstream effects on differentiation, specifically towards the PGC lineage. This knowledge contributes to our limited understanding of the true nature of the human pluripotent state in vitro. STUDY FUNDING/COMPETING INTEREST(S) This research is supported by the Concerted Research Actions funding from Bijzonder Onderzoeksfonds University Ghent (BOF GOA 01G01112).The authors declare no conflict of interest.
Collapse
Affiliation(s)
- S Warrier
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - J Taelman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - L Tilleman
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - M Van der Jeught
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - G Duggal
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - S Lierman
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - A Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - L Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - F Van Nieuwerburgh
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - D Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochem J 2019; 476:1585-1604. [PMID: 31036718 DOI: 10.1042/bcj20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023]
Abstract
Mitochondria play a central role in the maintenance of the naive state of embryonic stem cells. Many details of the mechanism remain to be fully elucidated. Solute carrier family 25 member 36 (Slc25a36) might regulate mitochondrial function through transporting pyrimidine nucleotides for mtDNA/RNA synthesis. Its physical role in this process remains unknown; however, Slc25a36 was recently found to be highly expressed in naive mouse embryonic stem cells (mESCs). Here, the function of Slc25a36 was characterized as a maintenance factor of mESCs pluripotency. Slc25a36 deficiency (via knockdown) has been demonstrated to result in mitochondrial dysfunction, which induces the differentiation of mESCs. The expression of key pluripotency markers (Pou5f1, Sox2, Nanog, and Utf1) decreased, while that of key TE genes (Cdx2, Gata3, and Hand1) increased. Cdx2-positive cells emerged in Slc25a36-deficient colonies under trophoblast stem cell culture conditions. As a result of Slc25a36 deficiency, mtDNA of knockdown cells declined, leading to impaired mitochondria with swollen morphology, decreased mitochondrial membrane potential, and low numbers. The key transcription regulators of mitochondrial biogenesis also decreased. These results indicate that mitochondrial dysfunction leads to an inability to support the pluripotency maintenance. Moreover, down-regulated glutathione metabolism and up-regulated focal adhesion reinforced and stabilized the process of differentiation by separately enhancing OCT4 degradation and promoting cell spread. This study improves the understanding of the function of Slc25a36, as well as the relationship of mitochondrial function with naive pluripotency maintenance and stem cell fate decision.
Collapse
|
8
|
Bar S, Benvenisty N. Epigenetic aberrations in human pluripotent stem cells. EMBO J 2019; 38:embj.2018101033. [PMID: 31088843 DOI: 10.15252/embj.2018101033] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are being increasingly utilized worldwide in investigating human development, and modeling and discovering therapies for a wide range of diseases as well as a source for cellular therapy. Yet, since the first isolation of human embryonic stem cells (hESCs) 20 years ago, followed by the successful reprogramming of human-induced pluripotent stem cells (hiPSCs) 10 years later, various studies shed light on abnormalities that sometimes accumulate in these cells in vitro Whereas genetic aberrations are well documented, epigenetic alterations are not as thoroughly discussed. In this review, we highlight frequent epigenetic aberrations found in hPSCs, including alterations in DNA methylation patterns, parental imprinting, and X chromosome inactivation. We discuss the potential origins of these abnormalities in hESCs and hiPSCs, survey the different methods for detecting them, and elaborate on their potential consequences for the different utilities of hPSCs.
Collapse
Affiliation(s)
- Shiran Bar
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Nissim Benvenisty
- Department of Genetics, The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
9
|
Sun Z, Zhu M, Lv P, Cheng L, Wang Q, Tian P, Yan Z, Wen B. The Long Noncoding RNA Lncenc1 Maintains Naive States of Mouse ESCs by Promoting the Glycolysis Pathway. Stem Cell Reports 2018; 11:741-755. [PMID: 30174313 PMCID: PMC6135739 DOI: 10.1016/j.stemcr.2018.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
The naive embryonic stem cells (nESCs) display unique characteristics compared with the primed counterparts, but the underlying molecular mechanisms remain elusive. Here we investigate the functional roles of Lncenc1, a highly abundant long noncoding RNA in nESCs. Knockdown or knockout of Lncenc1 in mouse nESCs leads to a significantly decreased expression of core pluripotency genes and a significant reduction of colony formation capability. Furthermore, upon the depletion of Lncenc1, the expression of glycolysis-associated genes is significantly reduced, and the glycolytic activity is substantially impaired, as indicated by a more than 50% reduction in levels of glucose consumption, lactate production, and extracellular acidification rate. Mechanistically, Lncenc1 interacts with PTBP1 and HNRNPK, which regulate the transcription of glycolytic genes, thereby maintaining the self-renewal of nESCs. Our results demonstrate the functions of Lncenc1 in linking energy metabolism and naive state of ESCs, which may enhance our understanding of the molecular basis underlying naive pluripotency.
Collapse
Affiliation(s)
- Zihao Sun
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Minzhe Zhu
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pin Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Cheng
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qianfeng Wang
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Pengxiang Tian
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zixiang Yan
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Bo Wen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Fuentes DR, Swigut T, Wysocka J. Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. eLife 2018; 7:35989. [PMID: 30070637 PMCID: PMC6158008 DOI: 10.7554/elife.35989] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022] Open
Abstract
Recent work suggests extensive adaptation of transposable elements (TEs) for host gene regulation. However, high numbers of integrations typical of TEs, coupled with sequence divergence within families, have made systematic interrogation of the regulatory contributions of TEs challenging. Here, we employ CARGO, our recent method for CRISPR gRNA multiplexing, to facilitate targeting of LTR5HS, an ape-specific class of HERVK (HML-2) LTRs that is active during early development and present in ~700 copies throughout the human genome. We combine CARGO with CRISPR activation or interference to, respectively, induce or silence LTR5HS en masse, and demonstrate that this system robustly targets the vast majority of LTR5HS insertions. Remarkably, activation/silencing of LTR5HS is associated with reciprocal up- and down-regulation of hundreds of human genes. These effects require the presence of retroviral sequences, but occur over long genomic distances, consistent with a pervasive function of LTR5HS elements as early embryonic enhancers in apes.
Collapse
Affiliation(s)
- Daniel R Fuentes
- Cancer Biology Program, Stanford University School of Medicine, Stanford, United States.,Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
11
|
Interspecies chimeras. Curr Opin Genet Dev 2018; 52:36-41. [PMID: 29859382 DOI: 10.1016/j.gde.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/18/2022]
Abstract
By probing early embryogenesis and regeneration, interspecies chimeras provide a unique platform for discovery and clinical use. Although efficient generation of human:animal chimeric embryos remains elusive, recent advancements attempt to overcome incompatibilities in xenogeneic development and transplantation.
Collapse
|
12
|
Collier AJ, Rugg-Gunn PJ. Identifying Human Naïve Pluripotent Stem Cells - Evaluating State-Specific Reporter Lines and Cell-Surface Markers. Bioessays 2018; 40:e1700239. [PMID: 29574793 DOI: 10.1002/bies.201700239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/11/2018] [Indexed: 12/11/2022]
Abstract
Recent reports that human pluripotent stem cells can be captured in a spectrum of states with variable properties has prompted a re-evaluation of how pluripotency is acquired and stabilised. The latest additions to the stem cell hierarchy open up opportunities for understanding human development, reprogramming, and cell state transitions more generally. Many of the new cell lines have been collectively termed 'naïve' human pluripotent stem cells to distinguish them from the conventional 'primed' cells. Here, several transcriptional and epigenetic hallmarks of human pluripotent states in the recently described cell lines are reviewed and evaluated. Methods to derive and identify human naïve pluripotent stem cells are also discussed, with a focus on the uses and future developments of state-specific reporter cell lines and cell-surface proteins. Finally, opportunities and uncertainties in naïve stem cell biology are highlighted, and the current limitations of human naïve pluripotent stem cells considered, particularly in the context of differentiation.
Collapse
Affiliation(s)
- Amanda J Collier
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
13
|
Trusler O, Huang Z, Goodwin J, Laslett AL. Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Res 2018; 26:36-43. [DOI: 10.1016/j.scr.2017.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
|