1
|
O'Neill MJ, Yang T, Laudeman J, Calandranis ME, Harvey ML, Solus JF, Roden DM, Glazer AM. ParSE-seq: a calibrated multiplexed assay to facilitate the clinical classification of putative splice-altering variants. Nat Commun 2024; 15:8320. [PMID: 39333091 PMCID: PMC11437130 DOI: 10.1038/s41467-024-52474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Interpreting the clinical significance of putative splice-altering variants outside canonical splice sites remains difficult without time-intensive experimental studies. To address this, we introduce Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed assay to quantify variant effects on RNA splicing. We first apply this technique to study hundreds of variants in the arrhythmia-associated gene SCN5A. Variants are studied in 'minigene' plasmids with molecular barcodes to allow pooled variant effect quantification. We perform experiments in two cell types, including disease-relevant induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The assay strongly separates known control variants from ClinVar, enabling quantitative calibration of the ParSE-seq assay. Using these evidence strengths and experimental data, we reclassify 29 of 34 variants with conflicting interpretations and 11 of 42 variants of uncertain significance. In addition to intronic variants, we show that many synonymous and missense variants disrupted RNA splicing. Two splice-altering variants in the assay also disrupt splicing and sodium current when introduced into iPSC-CMs by CRISPR-Cas9 editing. ParSE-seq provides high-throughput experimental data for RNA-splicing to support precision medicine efforts and can be readily adopted to study other loss-of-function genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria E Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Lorena Harvey
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Luo X, Liu L, Rong H, Liu X, Yang L, Li N, Shi H. ENU-based dominant genetic screen identifies contractile and neuronal gene mutations in congenital heart disease. Genome Med 2024; 16:97. [PMID: 39135118 PMCID: PMC11318149 DOI: 10.1186/s13073-024-01372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is the most prevalent congenital anomaly, but its underlying causes are still not fully understood. It is believed that multiple rare genetic mutations may contribute to the development of CHD. METHODS In this study, we aimed to identify novel genetic risk factors for CHD using an ENU-based dominant genetic screen in mice. We analyzed fetuses with malformed hearts and compared them to control littermates by whole exome or whole genome sequencing (WES/WGS). The differences in mutation rates between observed and expected values were tested using the Poisson and Binomial distribution. Additionally, we compared WES data from human CHD probands obtained from the Pediatric Cardiac Genomics Consortium with control subjects from the 1000 Genomes Project using Fisher's exact test to evaluate the burden of rare inherited damaging mutations in patients. RESULTS By screening 10,285 fetuses, we identified 1109 cases with various heart defects, with ventricular septal defects and bicuspid aortic valves being the most common types. WES/WGS analysis of 598 cases and 532 control littermates revealed a higher number of ENU-induced damaging mutations in cases compared to controls. GO term and KEGG pathway enrichment analysis showed that pathways related to cardiac contraction and neuronal development and functions were enriched in cases. Further analysis of 1457 human CHD probands and 2675 control subjects also revealed an enrichment of genes associated with muscle and nervous system development in patients. By combining the mice and human data, we identified a list of 101 candidate digenic genesets, from which each geneset was co-mutated in at least one mouse and two human probands with CHD but not in control mouse and control human subjects. CONCLUSIONS Our findings suggest that gene mutations affecting early hemodynamic perturbations in the developing heart may play a significant role as a genetic risk factor for CHD. Further validation of the candidate gene set identified in this study could enhance our understanding of the complex genetics underlying CHD and potentially lead to the development of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxi Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lifeng Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Haowei Rong
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ling Yang
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Nan Li
- Westlake University High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Li S, Zhang Z, Ding Y, Yu T, Qin Z, Guo S. Dissecting the associations of KCNH2 genetic polymorphisms with various types of cardiac arrhythmias. Gene 2024; 899:148132. [PMID: 38181928 DOI: 10.1016/j.gene.2024.148132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Cardiac arrhythmia, a common cardiovascular disease, is closely related to genetic polymorphisms. However, the associations between polymorphisms in KCNH2 and various arrhythmias remain inadequately explored. METHODS Guided by the assumption that KCNH2 genetic polymorphisms significantly contribute to the development of arrhythmias, we thoroughly explored the associations between 85 KCNH2 genetic variations and 16 cardiac arrhythmias in a sample obtained from the UK Biobank (UKBB, N = 307,473). The illnesses documented in the electronic medical records of the sample were mapped to a phecode system for a more accurate representation of distinct phenotypes. Survival analysis was used to test the effect of KCNH2 variants on arrhythmia incidence, and a phenotype-wide association study (PheWAS) was performed to investigate the effect of KCNH2 polymorphisms on 102 traits, including physical measurements, biomarkers, and hematological indicators. RESULTS Novel associations of variants rs2269001 and rs7789585 in KCNH2 with paroxysmal tachycardia (PT) and atrial fibrillation/flutter (AF/AFL), respectively, were identified. Moreover, with an increase in the number of minor alleles of these two variants, the incidence rates of PT and AF/AFL decreased. In addition, the PheWAS results suggested that these two single nucleotide polymorphisms were associated with multiple parameters in physical measurements and neutrophil percentage. CONCLUSION The multiple novel associations observed in this study illustrate the importance of KCNH2 genetic variations in the pathogenesis of arrhythmia.
Collapse
Affiliation(s)
- Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Tingting Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zongshi Qin
- Peking University Clinical Research Institute, Peking University, Beijing, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
5
|
O'Neill MJ, Yang T, Laudeman J, Calandranis M, Solus J, Roden DM, Glazer AM. ParSE-seq: A Calibrated Multiplexed Assay to Facilitate the Clinical Classification of Putative Splice-altering Variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.04.23295019. [PMID: 37732247 PMCID: PMC10508793 DOI: 10.1101/2023.09.04.23295019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Background Interpreting the clinical significance of putative splice-altering variants outside 2-base pair canonical splice sites remains difficult without functional studies. Methods We developed Parallel Splice Effect Sequencing (ParSE-seq), a multiplexed minigene-based assay, to test variant effects on RNA splicing quantified by high-throughput sequencing. We studied variants in SCN5A, an arrhythmia-associated gene which encodes the major cardiac voltage-gated sodium channel. We used the computational tool SpliceAI to prioritize exonic and intronic candidate splice variants, and ClinVar to select benign and pathogenic control variants. We generated a pool of 284 barcoded minigene plasmids, transfected them into Human Embryonic Kidney (HEK293) cells and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), sequenced the resulting pools of splicing products, and calibrated the assay to the American College of Medical Genetics and Genomics scheme. Variants were interpreted using the calibrated functional data, and experimental data were compared to SpliceAI predictions. We further studied some splice-altering missense variants by cDNA-based automated patch clamping (APC) in HEK cells and assessed splicing and sodium channel function in CRISPR-edited iPSC-CMs. Results ParSE-seq revealed the splicing effect of 224 SCN5A variants in iPSC-CMs and 244 variants in HEK293 cells. The scores between the cell types were highly correlated (R2=0.84). In iPSCs, the assay had concordant scores for 21/22 benign/likely benign and 24/25 pathogenic/likely pathogenic control variants from ClinVar. 43/112 exonic variants and 35/70 intronic variants with determinate scores disrupted splicing. 11 of 42 variants of uncertain significance were reclassified, and 29 of 34 variants with conflicting interpretations were reclassified using the functional data. SpliceAI computational predictions correlated well with experimental data (AUC = 0.96). We identified 20 unique SCN5A missense variants that disrupted splicing, and 2 clinically observed splice-altering missense variants of uncertain significance had normal function when tested with the cDNA-based APC assay. A splice-altering intronic variant detected by ParSE-seq, c.1891-5C>G, also disrupted splicing and sodium current when introduced into iPSC-CMs at the endogenous locus by CRISPR editing. Conclusions ParSE-seq is a calibrated, multiplexed, high-throughput assay to facilitate the classification of candidate splice-altering variants.
Collapse
Affiliation(s)
| | - Tao Yang
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Julie Laudeman
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Maria Calandranis
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joseph Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Morales A, Goehringer J, Sanoudou D. Evolving cardiovascular genetic counseling needs in the era of precision medicine. Front Cardiovasc Med 2023; 10:1161029. [PMID: 37424912 PMCID: PMC10325680 DOI: 10.3389/fcvm.2023.1161029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
In the era of Precision Medicine the approach to disease diagnosis, treatment, and prevention is being transformed across medical specialties, including Cardiology, and increasingly involves genomics approaches. The American Heart Association endorses genetic counseling as an essential component in the successful delivery of cardiovascular genetics care. However, with the dramatic increase in the number of available cardiogenetic tests, the demand, and the test result complexity, there is a need not only for a greater number of genetic counselors but more importantly, for highly specialized cardiovascular genetic counselors. Consequently, there is a pressing need for advanced cardiovascular genetic counseling training, along with innovative online services, telemedicine, and patient-facing digital tools, as the most effective way forward. The speed of implementation of these reforms will be of essence in the translation of scientific advancements into measurable benefits for patients with heritable cardiovascular disease and their families.
Collapse
Affiliation(s)
- Ana Morales
- Translational Health Sciences Program, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, ‘Attikon’ Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|