1
|
Tseng CH, Shah KM, Chiu IJ, Hsiao LL. The Role of Autophagy in Type 2 Diabetic Kidney Disease Management. Cells 2023; 12:2691. [PMID: 38067119 PMCID: PMC10705810 DOI: 10.3390/cells12232691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD), or diabetic nephropathy (DN), is one of the most prevalent complications of type 2 diabetes mellitus (T2DM) and causes severe burden on the general welfare of T2DM patients around the world. While several new agents have shown promise in treating this condition and potentially halting the progression of the disease, more work is needed to understand the complex regulatory network involved in the disorder. Recent studies have provided new insights into the connection between autophagy, a physiological metabolic process known to maintain cellular homeostasis, and the pathophysiological pathways of DKD. Typically, autophagic activity plays a role in DKD progression mainly by promoting an inflammatory response to tissue damage, while both overactivated and downregulated autophagy worsen disease outcomes in different stages of DKD. This correlation demonstrates the potential of autophagy as a novel therapeutic target for the disease, and also highlights new possibilities for utilizing already available DN-related medications. In this review, we summarize findings on the relationship between autophagy and DKD, and the impact of these results on clinical management strategies.
Collapse
Affiliation(s)
- Che-Hao Tseng
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kavya M. Shah
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| | - I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| |
Collapse
|
2
|
Ferulic acid ameliorates renal injury via improving autophagy to inhibit inflammation in diabetic nephropathy mice. Biomed Pharmacother 2022; 153:113424. [DOI: 10.1016/j.biopha.2022.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
|
3
|
Gao Z, Xu J, Fan Y, Qi Y, Wang S, Zhao S, Guo X, Xue H, Deng L, Zhao R, Sun C, Zhang P, Li G. PDIA3P1 promotes Temozolomide resistance in glioblastoma by inhibiting C/EBPβ degradation to facilitate proneural-to-mesenchymal transition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:223. [PMID: 35836243 PMCID: PMC9284800 DOI: 10.1186/s13046-022-02431-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background Resistance to temozolomide (TMZ) is a major obstacle to preventing glioblastoma (GBM) recurrence after surgery. Although long noncoding RNAs (lncRNAs) play a variety of roles in GBM, the lncRNAs that regulate TMZ resistance have not yet been clearly elucidated. This study aims to identify lncRNAs that may affect TMZ treatment sensitivity and to explore novel therapeutic strategies to overcome TMZ resistance in GBM. Methods LncRNAs associated with TMZ resistance were identified using the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) datasets. Quantitative real-time PCR (qRT–PCR) was used to determine the expression of PDIA3P1 in TMZ-resistant and TMZ-sensitive GBM cell lines. Both gain-of-function and loss-of-function studies were used to assess the effects of PDIA3P1 on TMZ resistance using in vitro and in vivo assays. Glioma stem cells (GSCs) were used to determine the effect of PDIA3P1 on the GBM subtype. The hypothesis that PDIA3P1 promotes proneural-to-mesenchymal transition (PMT) was established using bioinformatics analysis and functional experiments. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between PDIA3P1 and C/EBPβ. The posttranslational modification mechanism of C/EBPβ was verified using ubiquitination and coimmunoprecipitation (co-IP) experiments. CompuSyn was leveraged to calculate the combination index (CI), and the antitumor effect of TMZ combined with nefllamapimod (NEF) was validated both in vitro and in vivo. Results We identified a lncRNA, PDIA3P1, which was upregulated in TMZ-resistant GBM cell lines. Overexpression of PDIA3P1 promoted the acquisition of TMZ resistance, whereas knockdown of PDIA3P1 restored TMZ sensitivity. PDIA3P1 was upregulated in MES-GBM, promoted PMT progression in GSCs, and caused GBMs to be more resistant to TMZ treatment. Mechanistically, PDIA3P1 disrupted the C/EBPβ-MDM2 complex and stabilized the C/EBPβ protein by preventing MDM2-mediated ubiquitination. Expression of PDIA3P1 was upregulated in a time- and concentration-dependent manner in response to TMZ treatment, and TMZ-induced upregulation of PDIA3P1 was mediated by the p38α-MAPK signaling pathway. NEF is a small molecule drug that specifically targets p38α with excellent blood–brain barrier (BBB) permeability. NEF blocked TMZ-responsive PDIA3P1 upregulation and produced synergistic effects when combined with TMZ at specific concentrations. The combination of TMZ and NEF exhibited excellent synergistic antitumor effects both in vitro and in vivo. Conclusion PDIA3P1 promotes PMT by stabilizing C/EBPβ, reducing the sensitivity of GBM cells to TMZ treatment. NEF inhibits TMZ-responsive PDIA3P1 upregulation, and NEF combined with TMZ provides better antitumor effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02431-0.
Collapse
Affiliation(s)
- Zijie Gao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China
| | - Chong Sun
- Immune Regulation in Cancer, Germany Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ping Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Western Road, Jinan, 250012, Shandong, China. .,Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
HDAC6 Inhibition Extinguishes Autophagy in Cancer: Recent Insights. Cancers (Basel) 2021; 13:cancers13246280. [PMID: 34944907 PMCID: PMC8699196 DOI: 10.3390/cancers13246280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Autophagy is an essential process in cell recycling, and its involvement in cancer has been increasingly recognized in the last few decades. This mechanism acts as a double-edged sword in tumor progression and is known to either block or promote tumorigenesis in a context-specific manner. Its role in determining chemotherapeutic resistance makes it a potential target in cancer treatment. The two autophagic inhibitors hydroxychloroquine and chloroquine are currently used in the clinic but cause several side effects in tumor patients. Since recent studies also show that epigenetic enzymes such as histone deacetylase (HDAC) proteins are able to modulate autophagy, this review focuses on the ability of HDAC6 to actively regulate the autophagic process. We also explore the possibility of using HDAC6 inhibitors as therapeutic agents in adjuvant treatment or in combination with autophagic modulators to trigger this mechanism, thus avoiding the occurrence and effects of chemoresistance. Abstract Autophagy is an essential intracellular catabolic mechanism involved in the degradation and recycling of damaged organelles regulating cellular homeostasis and energy metabolism. Its activation enhances cellular tolerance to various stresses and is known to be involved in drug resistance. In cancer, autophagy has a dual role in either promoting or blocking tumorigenesis, and recent studies indicate that epigenetic regulation is involved in its mechanism of action in this context. Specifically, the ubiquitin-binding histone deacetylase (HDAC) enzyme HDAC6 is known to be an important player in modulating autophagy. Epigenetic modulators, such as HDAC inhibitors, mediate this process in different ways and are already undergoing clinical trials. In this review, we describe current knowledge on the role of epigenetic modifications, particularly HDAC-mediated modifications, in controlling autophagy in cancer. We focus on the controversy surrounding their ability to promote or block tumor progression and explore the impact of HDAC6 inhibitors on autophagy modulation in cancer. In light of the fact that targeted drug therapy for cancer patients is attracting ever increasing interest within the research community and in society at large, we discuss the possibility of using HDAC6 inhibitors as adjuvants and/or in combination with conventional treatments to overcome autophagy-related mechanisms of resistance.
Collapse
|
5
|
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29:650-666. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic diseases are still a serious concern for public health, due to their high prevalence, complex etiology and lack of successful treatments. Fibrosis consists of excessive accumulation of extracellular matrix components. As a result, the structure and function of tissues are impaired, thus potentially leading to organ failure and death in several chronic diseases. Myofibroblasts represent the principal cellular mediators of fibrosis, due to their extracellular matrix producing activity, and originate from different types of precursor cells, such as mesenchymal cells, epithelial cells and fibroblasts. Profibrotic activation of myofibroblasts can be triggered by a variety of mechanisms, including the transforming growth factor-β signalling pathway, which is a major factor driving fibrosis. Interestingly, preclinical and clinical studies showed that fibrotic degeneration can stop and even reverse by using specific antifibrotic treatments. Increasing scientific evidence is being accumulated about the role of sirtuins in modulating the molecular pathways responsible for the onset and development of fibrotic diseases. Sirtuins are NAD+ -dependent protein deacetylases that play a crucial role in several molecular pathways within the cells, many of which at the crossroad between health and disease. In this context, we will report the current knowledge supporting the role of sirtuins in the balance between healthy and diseased myofibroblast activity. In particular, we will address the signalling pathways and the molecular targets that trigger the differentiation and profibrotic activation of myofibroblasts and can be modulated by sirtuins.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, Benevento, Italy.,CEINGE Advanced Biotechnologies s.c.a.r.l. Naples, Italy
| | | | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Anaesthesiology, SRH Hospital Sigmaringen, Germany
| |
Collapse
|
6
|
Sun J, Tai S, Tang L, Yang H, Chen M, Xiao Y, Li X, Zhu Z, Zhou S. Acetylation Modification During Autophagy and Vascular Aging. Front Physiol 2021; 12:598267. [PMID: 33828486 PMCID: PMC8019697 DOI: 10.3389/fphys.2021.598267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Vascular aging plays a pivotal role in the morbidity and mortality of elderly people. Decrease in autophagy leads to acceleration of vascular aging, while increase in autophagy leads to deceleration of vascular aging. And emerging evidence indicates that acetylation plays an important role in autophagy regulation; therefore, recent research has focused on an in-depth analysis of the mechanisms underlying this regulation. In this review, current knowledge on the role of acetylation of autophagy-related proteins and the mechanisms by which acetylation including non-autophagy-related acetylation and autophagy related acetylation regulate vascular aging have been discussed. We conclude that the occurrence of acetylation modification during autophagy is a fundamental mechanism underlying autophagy regulation and provides promising targets to retard vascular aging.
Collapse
Affiliation(s)
- Jiaxing Sun
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liang Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yichao Xiao
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xuping Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhaowei Zhu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Current Therapies in Nephrotic Syndrome: HDAC inhibitors, an Emerging Therapy for Kidney Diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
8
|
Sun X, Sun Y, Lin S, Xu Y, Zhao D. Histone deacetylase inhibitor valproic acid attenuates high glucose‑induced endoplasmic reticulum stress and apoptosis in NRK‑52E cells. Mol Med Rep 2020; 22:4041-4047. [PMID: 32901855 DOI: 10.3892/mmr.2020.11496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, alleviates diabetic nephropathy (DN). However, the biological mechanisms underlying this protective effect remains unclear. This study aimed to investigate the effects of histone deacetylase inhibitor VPA on hyperglycemic induction of NRK‑52E cell ERS and apoptosis. Endoplasmic reticulum stress (ERS)‑related apoptosis is involved in DN, and improving ERS may delay the symptoms of DN. Histone deacetylase regulates gene transcription or expression of ERS‑related proteins. The present study established an ERS model by treating the rat renal tubular epithelial cells NRK‑52E with high glucose (HG) and investigated the effects of VPA on the apoptosis of the NRK‑52E cells. HG stimulation significantly increased the protein levels of the ERS‑related proteins including glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase‑12 and phosphorylated (p)‑JNK. VPA treatment further upregulated GRP78 expression and attenuated the levels of ATF4, CHOP, caspase‑12 and p‑JNK. Notably, HG markedly promoted apoptosis of NRK‑52E cells by regulating the protein levels of Bax, cleaved caspase‑3 and Bcl‑2, which was attenuated by simultaneous VPA treatment. Mechanistically, VPA increased the total acetylation levels of histone H4 in NRK‑52E cells and increased the histone H4 acetylation of the GRP78 promoter region. In conclusion, VPA attenuated HG‑induced ERS and apoptosis in NRK‑52E cells, which may be due to the regulation of acetylation levels of ERS‑related proteins. In addition, the present study suggested that HDACIs are promising drugs for treating patients with DN.
Collapse
Affiliation(s)
- Xinyi Sun
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Yuman Sun
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Sitong Lin
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Yan Xu
- Endocrine Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| | - Dongming Zhao
- Cardiovascular Department, Affiliated Hospital of Beihua University, Chuanying, Jilin 132011, P.R. China
| |
Collapse
|
9
|
Lee IH. Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp Mol Med 2019; 51:1-11. [PMID: 31492861 PMCID: PMC6802627 DOI: 10.1038/s12276-019-0302-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has indicated that sirtuins are key components of diverse physiological processes, including metabolism and aging. Sirtuins confer protection from a wide array of metabolic and age-related diseases, such as cancer, cardiovascular and neurodegenerative diseases. Recent studies have also suggested that sirtuins regulate autophagy, a protective cellular process for homeostatic maintenance in response to environmental stresses. Here, we describe various biological and pathophysiological processes regulated by sirtuin-mediated autophagy, focusing on cancer, heart, and liver diseases, as well as stem cell biology. This review also emphasizes key molecular mechanisms by which sirtuins regulate autophagy. Finally, we discuss novel insights into how new therapeutics targeting sirtuin and autophagy may potentially lead to effective strategies to combat aging and aging-related diseases.
Collapse
Affiliation(s)
- In Hye Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
10
|
Salem AM, Ragheb AS, Hegazy MGA, Matboli M, Eissa S. Caffeic Acid Modulates miR-636 Expression in Diabetic Nephropathy Rats. Indian J Clin Biochem 2019; 34:296-303. [PMID: 31391719 PMCID: PMC6660537 DOI: 10.1007/s12291-018-0743-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/21/2018] [Indexed: 01/25/2023]
Abstract
We investigated the action of caffeic acid in regulating miR-636 expression level in kidney of streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were orally treated with caffeic acid at 40 mg/kg/day for 8 weeks. At the end of the treatment, body and kidney weight and blood glucose levels were determined, blood, urine, and kidneys were collected for biochemical and histological examination. Expression levels of miR-636 were determined in liver by qRT-PCR. Induction of diabetic nephropathy by streptozotocin was evidenced by displayed elevated levels of serum creatinine, blood urea nitrogen, microalbuminuria and urinary albumin/creatinine ratio in addition to renal hypotrophy. Caffeic acid (CA) can ameliorate renal damage and significantly decreased the fasting blood glucose, cholesterol and triglyceride in diabetic rats. CA treatment improved histological architecture in the diabetic kidney. CA significantly down regulate miR-636 expression level in the kidney of diabetic rats in comparison to healthy group. Overall, caffeic acid down regulates miR-636 expression level which is involved in development of diabetic nephropathy and might therefore be potential attractive therapeutic agent to pursue in DN.
Collapse
Affiliation(s)
- Ahmed M. Salem
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Aya S. Ragheb
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa G. A. Hegazy
- Biochemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. box 1138, Abbassia, Cairo, Egypt
| | - Sanaa Eissa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, P.O. box 1138, Abbassia, Cairo, Egypt
| |
Collapse
|
11
|
Wang Y, Li Y, Yang Z, Wang Z, Chang J, Zhang T, Chi Y, Han N, Zhao K. Pyridoxamine Treatment of HK-2 Human Proximal Tubular Epithelial Cells Reduces Oxidative Stress and the Inhibition of Autophagy Induced by High Glucose Levels. Med Sci Monit 2019; 25:1480-1488. [PMID: 30799433 PMCID: PMC6400021 DOI: 10.12659/msm.914799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Diabetic nephropathy is a predominant cause of renal failure, which is an important chronic complication of diabetes. Pyridoxamine (PM) has been reported to protect renal tubular epithelial cells against oxidative damage and delay or inhibit the development and generation of glucose-induced renal insufficiency at the early stage of disease. In this study, we attempted to explore the protection mechanism of PM on human proximal tubular epithelial cells (HK-2 cells) induced by high glucose. Material/Methods HK-2 cells were cultivated by high glucose medium in the absence or presence of PM. Cell Counting Kit-8 was used to investigate the most appropriate drug concentration of PM by detecting the cell viability of HK-2 cells. The expression of autophagy-related protein Beclin-1, LC-3II, and p62 was measured by western blot analysis, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence. The expression and localization of Beclin-1 and p62 were also detected via immunofluorescence. The intracellular reactive oxygen species generation was detected using the reactive oxygen species assay kit. The effects of PM on antioxidant defenses were evaluated with glutathione peroxidase (GPx), manganese superoxide dismutase (MnSOD) activity, and glutathione/glutathione disulfide (GSH/GSSG) ratio. Results High glucose levels were able to upregulate the expression of oxidative stress associated protein and inhibit autophagy-associated changes verified by western blotting, RT-qPCR and immunofluorescence. Administration of PM reversed the high glucose-induced low-expressed Beclin-1 and LC-3II, and overexpressed p62 and intracellular reactive oxygen species levels. Furthermore, non-enzymatic antioxidant defenses and enzymatic antioxidant defenses were turned on by the application of PM. Conclusions Treatment with PM could reverse high glucose-induced inhibition of autophagy and oxidative stress.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland).,Department of Nephrology, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Ying Li
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Zhiping Yang
- Department of Urinary Surgery, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Ziqiang Wang
- Department of Nephrology, Cangzhou People's Hospital, Cangzhou, Hebei, China (mainland)
| | - Jiang Chang
- Department of Hepatobiliary Surgery, Bayannur City Hospital, Bayannaoer, Inner Mongolia, China (mainland)
| | - Tao Zhang
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yanqing Chi
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ning Han
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Kunxiao Zhao
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
12
|
Caffeic Acid Attenuates Diabetic Kidney Disease via Modulation of Autophagy in a High-Fat Diet/Streptozotocin- Induced Diabetic Rat. Sci Rep 2017; 7:2263. [PMID: 28536471 PMCID: PMC5442114 DOI: 10.1038/s41598-017-02320-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/10/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to evaluate the anti-diabetic nephropathy effect of Caffeic acid and to prove our hypothesis for its mechanism of action that it may occur by reactivation of autophagy pathway via suppression of autophagy regulatory miRNAs. In vivo, high-fat diet and streptozotocin-induced (HFD-STZ) diabetic rats were treated with Caffeic acid once per day for 12 weeks before and after development of diabetic nephropathy. Blood and urine biochemical parameters, autophagy transcripts and their epigenetic regulators together with renal tissue morphology were investigated. In diabetic rats, Caffeic acid intake, caused improvement in albumin excretion,blood glucose, reduced renal mesangial matrix extension with increased vacuolation and reappearance of autophagosomes. Meanwhile, it resulted in autophagy genes up-regulation [RB 1-inducible coiled coil protein (RB1CC1), Microtubule-associated proteins 1A/1B light chain 3(MAP1LC3B), Autophagy related gene (ATG-12),] with simultaneous reduction in their epigenetic regulators; miRNA-133b, −342 and 30a, respectively. These above mentioned effects were more significant in the diabetic nephropathy Caffeic treated rats than in the prophylactic group. Based on our results we postulated that caffeic acid modulates autophagy pathway through inhibition of autophagy regulatory miRNAs, that could explain its curative properties against diabetic kidney disease.
Collapse
|
13
|
Khan S, Komarya SK, Jena G. Phenylbutyrate and β-cell function: contribution of histone deacetylases and ER stress inhibition. Epigenomics 2017; 9:711-720. [PMID: 28470097 DOI: 10.2217/epi-2016-0160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Incidences of diabetes are increasing globally due to involvement of genetic and epigenetic factors. Phenylbutyrate (PBA) is a US FDA approved drug for treatment of urea cycle disorder in children. PBA reduces endoplasmic reticulum (ER) stress and is proven as a potent histone deacetylases (HDACs) inhibitor. Chronic ER stress results in unfolding protein response, which triggers apoptosis. Abnormal ER homoeostasis is responsible for defective processing of several genes/proteins and contributes to β-cell death/failure. Accumulated evidences indicated that HDACs modulate key biochemical pathways and HDAC inhibitors improve β-cell function and insulin resistance by modulating multiple targets. This review highlights the role of PBA on β-cell functions, insulin resistance for possible treatment of diabetes through inhibition of ER stress and HDACs.
Collapse
Affiliation(s)
- Sabbir Khan
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| | - Sandeep K Komarya
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment & Intervention Studies, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Sector-67, SAS Nagar, Punjab-160062, India
| |
Collapse
|