1
|
Liu L, Ye F, Jiang Y, Liu W, He D, He W, Gao X, Liu H, Liao J, He B, He F. SIRT5 promotes the osteo-inductive potential of BMP9 by stabilizing the HIF-1α protein in mouse embryonic fibroblasts. Genes Dis 2025; 12:101563. [PMID: 40322223 PMCID: PMC12049830 DOI: 10.1016/j.gendis.2025.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/27/2024] [Accepted: 01/12/2025] [Indexed: 05/08/2025] Open
Abstract
Bone morphogenetic protein 9 (BMP9) exhibits remarkable osteogenic potential. However, the intricate mechanisms driving this function of BMP9 remain elusive. This study endeavors to investigate the potential role of sirtuin 5 (SIRT5) in enhancing BMP9's osteogenic capacity and decipher the underlying molecular pathways. To achieve this aim, we employed real-time PCR, western blotting, histochemical staining, and a cranial defect repair model to assess the impact of SIRT5 on BMP9-mediated osteogenesis. We utilized real-time PCR, western blotting, immunofluorescent staining, and immunoprecipitation assay to explore the associated mechanisms. Our results revealed that SIRT5 significantly up-regulated BMP9-induced osteogenic markers, while SIRT5 knockdown reduced their expression. Concurrently, hypoxia-inducible factor 1 subunit alpha (HIF-1α) level was increased by SIRT5, but reduced by SIRT5 knockdown. Notably, HIF-1α potentiated the SIRT5's ability to strengthen BMP9's osteogenic potential, whereas HIF-1α silencing reduced this effect, which was confirmed by bone defect repair assay. The acetylation and malonylation levels of HIF-1α were reduced by SIRT5, which may enhance its stability to promote BMP9's osteogenic effect. Conversely, SIRT5 knockdown reversed these effects and promoted the degradation of HIF-1α. Collectively, our results demonstrated that the BMP9's osteogenic potential could be promoted by SIRT5, potentially through stabilizing HIF-1α by reducing its acetylation and malonylation modification. This discovery may offer a novel strategy to accelerate bone tissue engineering by enhancing osteogenic differentiation, and it also sheds light on the possible mechanisms underlying BMP9-mediated osteogenic differentiation.
Collapse
Affiliation(s)
- Lu Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Fanglin Ye
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Wenting Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Dongmei He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Wenge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Bone and Soft Tissue Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Orthropetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthropetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthropetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junyi Liao
- Department of Orthropetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Fang He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Zhang H, Dang Z, Wang X, Wang C, Zhang H, Zhang Y. BMP9 enhances osteogenic differentiation in rheumatoid arthritis: a potential therapeutic approach. J Transl Med 2025; 23:241. [PMID: 40022220 PMCID: PMC11869551 DOI: 10.1186/s12967-025-06309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disorder that causes joint damage, including cartilage degradation and bone erosion. Bone morphogenetic protein 9 (BMP9), a member of the TGF-β superfamily, plays a key role in osteogenesis and tissue repair. However, its role in bone erosion and inflammation in RA remains underexplored. This study aims to evaluate BMP9's therapeutic potential in RA, focusing on its effects on bone destruction, osteogenesis, and inflammation. MATERIALS AND METHODS In this study, BMP9 expression was analyzed in synovial tissues from RA and osteoarthritis patients and in the ankle joints of collagen-induced arthritis (CIA) mice using immunohistochemistry, qRT-PCR, and Western blotting. The therapeutic effect of BMP9 on bone destruction was evaluated in a CIA mouse model through micro-CT imaging, histological analysis, and clinical scoring. Osteogenic differentiation was assessed by alkaline phosphatase and Alizarin Red S staining, while osteoclast activity was examined through tartrate-resistant acid phosphatase staining. Fluorescence double-labeling was used to track new bone formation. Data were analyzed using (Statistical Package for the Social Sciences) SPSS, and appropriate statistical tests were performed to determine significance. RESULTS In this study, BMP9 expression was significantly down-regulated in the synovial tissue of RA patients and in the ankle joints of CIA mice. BMP9 treatment in CIA mice ameliorated joint inflammation, as shown by reduced limb swelling, lower arthritis index, and improved tissue morphology. Furthermore, BMP9 significantly alleviated bone loss, as evidenced by increased bone mineral density and trabecular structure. However, BMP9 treatment did not significantly impact osteoclastogenesis or bone resorption. BMP9 also enhanced bone mineralization and formation, as shown by increased mineral apposition rate and bone formation rate. Additionally, BMP9 promoted osteogenic differentiation of synovial cells, enhancing alkaline phosphatase activity and mineral nodule formation. These results suggest that BMP9 has a protective effect on joint inflammation and bone loss in RA, potentially through promoting bone formation without influencing osteoclast activity. CONCLUSION Our study concludes that targeting BMP9 alleviates inflammation and promotes osteogenic differentiation in RA, highlighting BMP9 as a promising therapeutic target for addressing bone destruction in RA.
Collapse
Affiliation(s)
- Han Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zixian Dang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Haining Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Liu L, Fang T, Miao C, Li X, Zeng Y, Wang T, Cao Y, Huang D, Song D. DLX6-AS1 regulates odonto/osteogenic differentiation in dental pulp cells under the control of BMP9 via the miR-128-3p/MAPK14 axis: A laboratory investigation. Int Endod J 2024; 57:1623-1638. [PMID: 38973098 DOI: 10.1111/iej.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/08/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
AIM The regenerative capacity of dental pulp relies on the odonto/osteogenic differentiation of dental pulp cells (DPCs), but dynamic microenvironmental changes hinder the process. Bone morphogenetic protein 9 (BMP9) promotes differentiation of DPCs towards an odonto/osteogenic lineage, forming dentinal-like tissue. However, the molecular mechanism underlying its action remains unclear. This study investigates the role of DLX6 antisense RNA 1 (DLX6-AS1) in odonto/osteogenic differentiation induced by BMP9. METHODOLOGY Custom RT2 profiler PCR array, quantitative Real-Time PCR (qRT-PCR) and western blots were used to investigate the expression pattern of DLX6-AS1 and its potential signal axis. Osteogenic ability was evaluated using alkaline phosphatase and alizarin red S staining. Interactions between lncRNA and miRNA, as well as miRNA and mRNA, were predicted through bioinformatic assays, which were subsequently validated via RNA immunoprecipitation and dual luciferase reporter assays. Student's t-test or one-way ANOVA with post hoc Tukey HSD tests were employed for data analysis, with a p-value of less than .05 considered statistically significant. RESULTS DLX6-AS1 was upregulated upon BMP9 overexpression in DPCs, thereby promoting odonto/osteogenic differentiation. Additionally, miR-128-3p participated in BMP9-induced odonto/osteogenic differentiation by interacting with the downstream signal MAPK14. Modifying the expression of miR-128-3p and transfecting pcMAPK14/siMAPK14 had a rescue impact on odonto/osteogenic differentiation downstream of DLX6-AS1. Lastly, miR-128-3p directly interacted with both MAPK14 and DLX6-AS1. CONCLUSIONS DLX6-AS1 could regulate the odonto/osteogenic differentiation of DPCs under the control of BMP9 through the miR-128-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tongfeng Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Miao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangfen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanglin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Yang C, Sun M, Yang Y, Han Y, Wu X, Wu X, Cao H, Chen L, Lei Y, Hu X, Chen Y, Zeng Z, Li J, Shu X, Yang Z, Lu K, Li Y, Wang X, Yi B. Elevated circulating BMP9 aggravates pulmonary angiogenesis in hepatopulmonary syndrome rats through ALK1-Endoglin-Smad1/5/9 signalling. Eur J Clin Invest 2024; 54:e14212. [PMID: 38591651 DOI: 10.1111/eci.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.
Collapse
Affiliation(s)
- Chunyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Mei Sun
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yihui Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Department of Anesthesia, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yan Han
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiulin Wu
- Institute of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huilin Cao
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuhao Lei
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyan Hu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ziyang Zeng
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhong Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Shu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yujie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaobo Wang
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Ke KX, Gao X, Liu L, He WG, Jiang Y, Long CB, Zhong G, Xu ZH, Deng ZL, He BC, Hu N. Leptin attenuates the osteogenic induction potential of BMP9 by increasing β-catenin malonylation modification via Sirt5 down-regulation. Aging (Albany NY) 2024; 16:7870-7888. [PMID: 38709288 PMCID: PMC11131982 DOI: 10.18632/aging.205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of β-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of β-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/β-catenin signalling via down-regulating Sirt5 to increase the malonylation level of β-catenin partly.
Collapse
Affiliation(s)
- Kai-Xin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Cheng-Bin Long
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, Bishan Hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Gan Zhong
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zheng-Hao Xu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Ning Hu
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| |
Collapse
|
6
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The importance of BMPs and TGF-βs for endochondral bone repair - A longitudinal study in hip arthroplasty patients. Bone Rep 2023; 19:101723. [PMID: 38047271 PMCID: PMC10690547 DOI: 10.1016/j.bonr.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osseointegration of hip implants, although a decade-long process, shows striking similarities with the four major phases of endochondral bone repair. In the current study we investigated the spatiotemporal involvement of bone morphogenic proteins (BMPs) and transforming growth factor betas (TGF-βs) throughout the process of bone repair leading to successfully osseointegrated hip implants. Materials and methods Twenty-four patients that had undergone primary total hip arthroplasty (THA) due to one-sided osteoarthritis (OA) were investigated during a period of 18 years (Y) with repeated measurements of plasma biomarkers as well as clinical and radiological variables. All implants were clinically and radiographically well anchored throughout the follow-up. Eighty-one healthy donors divided in three gender- and age-matched groups and twenty OA patients awaiting THA, served as controls. Plasma was analyzed for BMP-1, -2, -3, -4, -6, -7 -9 and TGF-β1, -β2, -β3 by use of a high-sensitivity and wide dynamic range electrochemiluminescence technique allowing for detection of minor changes. Results Spatiotemporal changes during the follow-up are presented in the context of the four phases of endochondral bone repair shown in earlier studies and transposed to the current study based on similarities in biomarker responses. Phase 1: Primary proinflammatory phase lasting from surgery until day 7, Phase 2: Chondrogenic phase from day 7 until 18 months postsurgery, Phase 3: Secondary proinflammatory and cartilage remodeling phase lasting from 18 months until 7Y, Phase 4: coupled bone remodeling from 7Y until 18Y postsurgery. BMP-1 increased sharply shortly after surgery and remained significantly above healthy during the chondrocyte recruitment, proliferation, and hypertrophy phases with a subsequent return to control level at 5Y postsurgery. BMP-2 was above healthy controls before surgery and 1 day after surgery before decreasing to control level and remaining there throughout the follow-up. BMP-3 was at control level from presurgery until 6M after surgery when it increased to a peak at 2Y during the cartilage hypertrophy phase followed by a gradual decrease to control level at 10Y during the phase of bone formation. In the following, BMP-3 decreased below controls to a nadir 15Y postsurgery during coupled bone remodeling. BMP-4 was at control level from presurgery until 10Y postsurgery when it increased to a sharp peak at 15Y after surgery followed by a return to the level of healthy at 18Y. BMP-6 did not differ from healthy during the follow-up. BMP-7 was at control level from presurgery until 1Y postsurgery before gradually increasing to a peak at 10Y during the early phase of osteogenesis with a gradual return to control level at 18Y during the phase of coupled bone remodeling. BMP-9 was above OA before surgery followed by a decrease to basal level on day 1 after surgery and a renewed increase to a plateau above controls lasting from 6 W until returning to the level of healthy at 18Y postsurgery, i.e., throughout the phases of cartilage formation, cartilage hypertrophy and remodeling, bone formation and coupled bone remodeling. TGF-β1 was above controls presurgery before decreasing to baseline shortly after surgery followed by a renewed increase at 6 M to a peak at 2Y during cartilage hypertrophy/remodeling followed by a gradual return to baseline at 10Y during early osteoblastogenesis. TGF-β2 was at control level from presurgery until the phase of cartilage remodeling at 5Y when it increased sharply to a peak at 7Y with a gradual return to baseline at 18Y postsurgery. TGF-β3 remained at control level throughout the study. Conclusion This study shows that the involvement of BMPs and TGF-βs in endochondral bone repair is a process of stepwise recruitment of individual biomarkers characterized by distinct, yet overlaping, spatiotemporal patterns that extend from the early phase of pre-chondrocyte recruitment until the late phase of coupled bone remodeling.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
7
|
Li Z, Wen X, Li N, Zhong C, Chen L, Zhang F, Zhang G, Lyu A, Liu J. The roles of hepatokine and osteokine in liver-bone crosstalk: Advance in basic and clinical aspects. Front Endocrinol (Lausanne) 2023; 14:1149233. [PMID: 37091847 PMCID: PMC10117885 DOI: 10.3389/fendo.2023.1149233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Both the liver and bone are important secretory organs in the endocrine system. By secreting organ factors (hepatokines), the liver regulates the activity of other organs. Similarly, bone-derived factors, osteokines, are created during bone metabolism and act in an endocrine manner. Generally, the dysregulation of hepatokines is frequently accompanied by changes in bone mass, and osteokines can also disrupt liver metabolism. The crosstalk between the liver and bone, particularly the function and mechanism of hepatokines and osteokines, has increasingly gained notoriety as a topic of interest in recent years. Here, based on preclinical and clinical evidence, we summarize the potential roles of hepatokines and osteokines in liver-bone interaction, discuss the current shortcomings and contradictions, and make recommendations for future research.
Collapse
Affiliation(s)
- Zhanghao Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Wen
- Department of Anatomy, Jinzhou Medical University, Jinzhou, China
| | - Nanxi Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Chuanxin Zhong
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
| | - Aiping Lyu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Jin Liu, ; Aiping Lyu,
| |
Collapse
|