1
|
Wong KL, Teo KYW, Law GW, Zhang S, Wang T, Afizah H, Pua CJ, Tan BWL, Hui JHP, Toh WS. Mesenchymal Stem Cell Exosome and Fibrin Sealant Composite Enhances Rabbit Anterior Cruciate Ligament Repair. Am J Sports Med 2025; 53:871-884. [PMID: 39982121 PMCID: PMC11894873 DOI: 10.1177/03635465241313142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND The anterior cruciate ligament (ACL) fails to heal after rupture, leading to joint instability and an increased risk of osteoarthritis. Mesenchymal stem/stromal cell (MSC) exosomes have reported wide-ranging therapeutic efficacy; however, their potential for augmenting ACL repair remains to be investigated. PURPOSE To evaluate the use of MSC exosomes with fibrin sealant on biological augmentation of ACL healing after suture repair and their effects on ACL fibroblast functions. STUDY DESIGN Controlled laboratory study. METHODS Twelve rabbit knees underwent ACL transection and suture repair. MSC exosome and fibrin composite (Exosome+Fibrin) or fibrin (Fibrin) alone was used to supplement the suture repair in 6 knees. ACL repair was assessed by magnetic resonance imaging at 6 and 12 weeks postoperatively and by histologic and immunohistochemical analyses at 12 weeks. To investigate the mechanisms through which MSC exosomes augment ACL repair, metabolic activity, proliferation, migration, and matrix synthesis assays were performed using the primary ACL fibroblasts. RNA sequencing was also performed to assess global gene expression changes in exosome-treated ACL fibroblasts. RESULTS Based on magnetic resonance imaging findings, 5 of 6 Exosome+Fibrin-treated ACLs were completely or partially healed, as opposed to 5 of 6 Fibrin-treated ACLs appearing torn at 6 and 12 weeks postoperatively. Additionally, 4 of 6 Exosome+Fibrin-treated ACLs were isointense, as compared with 5 of 6 Fibrin-treated ACLs that were hyperintense, indicating improved remodeling and maturation of the repaired ACLs with Exosome+Fibrin treatment. Histologically, Exosome+Fibrin-treated ACLs showed more organized collagen fibers and abundant collagen deposition, with a high amount of collagen I and relatively lower amount of collagen III, which are consistent with the matrix structure and composition of the normal ACL. Cell culture studies using ACL fibroblasts showed that MSC exosomes enhanced proliferation, migration, and collagen synthesis and deposition, which are cellular processes relevant to ACL repair. Further gene set enrichment analysis revealed key pathways mediated by MSC exosomes in enhancing proliferation and migration while reducing matrix degradation of ACL fibroblasts. CONCLUSION The combination of MSC exosomes and fibrin sealant (Exosome+Fibrin) applied to a suture repair enhanced the morphologic and histologic properties of the ACL in a rabbit model, and these improvements could be attributed to the augmented functions of ACL fibroblasts with exosome treatment. CLINICAL RELEVANCE This work supports the use of MSC exosomes in biological augmentation of ACL healing after suture repair.
Collapse
Affiliation(s)
- Keng Lin Wong
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singhealth, Singapore
| | - Kristeen Ye Wen Teo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gin Way Law
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, National University Hospital, Singapore
| | - Shipin Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tianqi Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hassan Afizah
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute of Singapore, National Heart Centre Singapore, Singapore
| | | | - James Hoi Po Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, National University Hospital, Singapore
- Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore
- Faculty of Dentistry, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore
| |
Collapse
|
2
|
Hatano E, Akhter N, Anada R, Ono M, Oohashi T, Kuboki T, Kamioka H, Okada M, Matsumoto T, Hara ES. The cell membrane as biofunctional material for accelerated bone repair. Acta Biomater 2024; 186:411-423. [PMID: 39089349 DOI: 10.1016/j.actbio.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair. The PMNFs were isolated from different mouse cell lines (chondrocytes, osteoblasts, and fibroblasts), pre-conditioned, lyophilized, and subsequently transplanted into 2 mm critical-sized calvarial defects in mice (n = 75). The PMNFs from chondrocytes, following a 3-day pre-incubation, significantly accelerated bone repair within 2 weeks, through a coordinated attraction of macrophages, endothelial cells, and osteoblasts to the healing site. In vitro experiments confirmed that PMNFs enhanced cell adhesion. Comparison of the PMNF efficacy with phosphatidylserine, amorphous calcium phosphate (ACP), and living cells confirmed the unique ability of PMNFs to promote accelerated bone repair. Importantly, PMNFs promoted nearly complete integration of the regenerated bone with native tissue after 6 weeks (% non-integrated bone area = 15.02), contrasting with the partial integration (% non-integrated bone area = 56.10; p < 0.01, Student's test) with transplantation of ACP. Vickers microhardness tests demonstrated that the regenerated bone after 6 weeks (30.10 ± 1.75) exhibited hardness similar to native bone (31.07 ± 2.46). In conclusion, this is the first study to demonstrate that cell membrane can be a promising cell-free material with multifaceted biofunctional properties that promote accelerated bone repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Emi Hatano
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Risa Anada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
3
|
Lam WMR, Zhuo WH, Yang L, Tan R, Lim SK, Hey HWD, Toh WS. Mesenchymal Stem Cell Exosomes Enhance Posterolateral Spinal Fusion in a Rat Model. Cells 2024; 13:761. [PMID: 38727297 PMCID: PMC11083285 DOI: 10.3390/cells13090761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.
Collapse
Affiliation(s)
- Wing Moon Raymond Lam
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
| | - Wen-Hai Zhuo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
| | - Long Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
| | - Rachel Tan
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Hwee Weng Dennis Hey
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
4
|
Zhang B, Lai RC, Sim WK, Lim SK. Therapeutic Efficacy of Mesenchymal Stem/Stromal Cell Small Extracellular Vesicles in Alleviating Arthritic Progression by Restoring Macrophage Balance. Biomolecules 2023; 13:1501. [PMID: 37892183 PMCID: PMC10605110 DOI: 10.3390/biom13101501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation and damage, often associated with an imbalance in M1/M2 macrophages. Elevated levels of anti-inflammatory M2 macrophages have been linked to a therapeutic response in RA. We have previously demonstrated that mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) promote M2 polarization and hypothesized that MSC-sEVs could alleviate RA severity with a concomitant increase in M2 polarization. Here, we treated a mouse model of collagen-induced arthritis (CIA) with MSC-sEVs. Relative to vehicle-treated CIA mice, both low (1 μg) and high (10 μg) doses of MSC-sEVs were similarly efficacious but not as efficacious as Prednisolone, the positive control. MSC-sEV treatment resulted in statistically significant reductions in disease progression rate and disease severity as measured by arthritic index (AI), anti-CII antibodies, IL-6, and C5b-9 plasma levels. There were no statistically significant differences in the treatment outcome between low (1 μg) and high (10 μg) doses of MSC-sEVs. Furthermore, immunohistochemical analysis revealed that concomitant with the therapeutic efficacy, MSC-sEV treatment increased anti-inflammatory M2 macrophages and decreased pro-inflammatory M1 macrophages in the synovium. Consistent with increased M2 macrophages, histopathological examination also revealed reduced inflammation, pannus formation, cartilage damage, bone resorption, and periosteal new bone formation in the MSC-sEV-treated group compared to the vehicle group. These findings suggest that MSC-sEVs are potential biologic disease-modifying antirheumatic drugs (DMARDs) that can help slow or halt RA joint damage and preserve joint function.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; (B.Z.); (R.C.L.); (W.K.S.)
- Paracrine Therapeutics Pte. Ltd., 10 Choa Chu Kang Grove #13-22 Sol Acres, Singapore 688207, Singapore
- Department of Surgery, YLL School of Medicine, National University Singapore (NUS), 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
5
|
Shi J, Teo KYW, Zhang S, Lai RC, Rosa V, Tong HJ, Duggal MS, Lim SK, Toh WS. Mesenchymal stromal cell exosomes enhance dental pulp cell functions and promote pulp-dentin regeneration. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100078. [PMID: 37283805 PMCID: PMC10239699 DOI: 10.1016/j.bbiosy.2023.100078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Mesenchymal stromal/stem cell (MSC) therapies are currently being explored for dental pulp regeneration. As the therapeutic effects of MSCs in tissue repair are mediated mainly through the release of extracellular vesicles (EVs) including exosomes, we investigated here the cellular processes and molecular mechanisms modulated by MSC exosomes in dental pulp regeneration. Using dental pulp cell (DPC) cultures, we demonstrated that MSC exosomes could increase DPC migration, proliferation, and odontogenic differentiation. The enhancement of these cellular processes was mediated through exosomal CD73-mediated adenosine receptor activation of AKT and ERK signaling. Consistent with these observations, MSC exosomes increased the expression of dentin matrix proteins and promoted the formation of dentin-like tissue and bridge-like structures in a rat pulp defect model. These effects were comparable to that of mineral trioxide aggregate (MTA) treatment. MSC exosomes also yielded recellularized pulp-dentin tissues in the root canal of endodontically-treated human premolars, following subcutaneous implantation in the mouse dorsum. Together, our findings suggest that MSC exosomes could exert a multi-faceted effect on DPC functions including migration, proliferation and odontogenic differentiation to promote dental pulp regeneration. This study provides the basis for development of MSC exosomes as a cell-free MSC therapeutic alternative for pulp-dentin regeneration.
Collapse
Affiliation(s)
- Jiajun Shi
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore
- Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore
| |
Collapse
|
6
|
Teo KYW, Tan R, Wong KL, Hey DHW, Hui JHP, Toh WS. Small extracellular vesicles from mesenchymal stromal cells: the next therapeutic paradigm for musculoskeletal disorders. Cytotherapy 2023; 25:837-846. [PMID: 37191613 DOI: 10.1016/j.jcyt.2023.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Musculoskeletal disorders are one of the biggest contributors to morbidity and place an enormous burden on the health care system in an aging population. Owing to their immunomodulatory and regenerative properties, mesenchymal stromal/stem cells (MSCs) have demonstrated therapeutic efficacy for treatment of a wide variety of conditions, including musculoskeletal disorders. Although MSCs were originally thought to differentiate and replace injured/diseased tissues, it is now accepted that MSCs mediate tissue repair through secretion of trophic factors, particularly extracellular vesicles (EVs). Endowed with a diverse cargo of bioactive lipids, proteins, nucleic acids and metabolites, MSC-EVs have been shown to elicit diverse cellular responses and interact with many cell types needed in tissue repair. The present review aims to summarize the latest advances in the use of native MSC-EVs for musculoskeletal regeneration, examine the cargo molecules and mechanisms underlying their therapeutic effects, and discuss the progress and challenges in their translation to the clinic.
Collapse
Affiliation(s)
- Kristeen Ye Wen Teo
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore
| | - Rachel Tan
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Keng Lin Wong
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Department of Orthopedic Surgery, Sengkang General Hospital, Singapore Health Services, Singapore, Republic of Singapore
| | - Dennis Hwee Weng Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - James Hoi Po Hui
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Wei Seong Toh
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore; Faculty of Dentistry, National University of Singapore, Singapore, Republic of Singapore; Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Republic of Singapore; Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
7
|
Lai RC, Tan TT, Sim WK, Zhang B, Lim SK. A roadmap from research to clinical testing of mesenchymal stromal cell exosomes in the treatment of psoriasis. Cytotherapy 2023; 25:815-820. [PMID: 37115163 DOI: 10.1016/j.jcyt.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/01/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
The most clinically trialed cells, mesenchymal stromal cells (MSCs), are now known to mainly exert their therapeutic activity through paracrine secretions, which include exosomes. To mitigate potential regulatory concerns on the scalability and reproducibility in the preparations of MSC exosomes, MSC exosomes were produced using a highly characterized MYC-immortalized monoclonal cell line. These cells do not form tumors in athymic nude mice or exhibit anchorage-independent growth, and their exosomes do not carry MYC protein or promote tumor growth. Unlike intra-peritoneal injections, topical applications of MSC exosomes in a mouse model of IMQ-induced psoriasis alleviate interleukin (IL)-17, IL-23 and terminal complement complex, C5b9 in psoriatic skin. When applied on human skin explants, fluorescence from covalently labeled fluorescent MSC exosomes permeated and persisted in the stratum corneum for about 24 hours with negligible exit out of the stratum corneum into the underlying epidermis. As psoriatic stratum corneums are uniquely characterized by activated complements and Munro microabscesses, we postulated that topically applied exosomes permeate the psoriatic stratum corneum to inhibit C5b9 complement complex through CD59, and this inhibition attenuated neutrophil secretion of IL-17. Consistent with this, we demonstrated that assembly of C5b9 on purified human neutrophils induced IL-17 secretion and this induction was abrogated by MSC exosomes, which was in turn abrogated by a neutralizing anti-CD 59 antibody. We thus established the mechanism of action for the alleviation of psoriatic IL-17 by topically applied exosomes.
Collapse
Affiliation(s)
- Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Thong Teck Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore C/O NUHS Tower Block, Singapore, Republic of Singapore.
| |
Collapse
|
8
|
Fan S, Sun X, Su C, Xue Y, Song X, Deng R. Macrophages-bone marrow mesenchymal stem cells crosstalk in bone healing. Front Cell Dev Biol 2023; 11:1193765. [PMID: 37427382 PMCID: PMC10327485 DOI: 10.3389/fcell.2023.1193765] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Bone healing is associated with many orthopedic conditions, including fractures and osteonecrosis, arthritis, metabolic bone disease, tumors and periprosthetic particle-associated osteolysis. How to effectively promote bone healing has become a keen topic for researchers. The role of macrophages and bone marrow mesenchymal stem cells (BMSCs) in bone healing has gradually come to light with the development of the concept of osteoimmunity. Their interaction regulates the balance between inflammation and regeneration, and when the inflammatory response is over-excited, attenuated, or disturbed, it results in the failure of bone healing. Therefore, an in-depth understanding of the function of macrophages and bone marrow mesenchymal stem cells in bone regeneration and the relationship between the two could provide new directions to promote bone healing. This paper reviews the role of macrophages and bone marrow mesenchymal stem cells in bone healing and the mechanism and significance of their interaction. Several new therapeutic ideas for regulating the inflammatory response in bone healing by targeting macrophages and bone marrow mesenchymal stem cells crosstalk are also discussed.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Sun
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanchao Su
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiwen Xue
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiao Song
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Runzhi Deng
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Teo KYW, Zhang S, Loh JT, Lai RC, Hey HWD, Lam KP, Lim SK, Toh WS. Mesenchymal Stromal Cell Exosomes Mediate M2-like Macrophage Polarization through CD73/Ecto-5'-Nucleotidase Activity. Pharmaceutics 2023; 15:pharmaceutics15051489. [PMID: 37242732 DOI: 10.3390/pharmaceutics15051489] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Mesenchymal stem/stromal cell (MSC) exosomes have been shown to alleviate immune dysfunction and inflammation in preclinical animal models. This therapeutic effect is attributed, in part, to their ability to promote the polarization of anti-inflammatory M2-like macrophages. One polarization mechanism has been shown to involve the activation of the MyD88-mediated toll-like receptor (TLR) signaling pathway by the presence of extra domain A-fibronectin (EDA-FN) within the MSC exosomes. Here, we uncovered an additional mechanism where MSC exosomes mediate M2-like macrophage polarization through exosomal CD73 activity. Specifically, we observed that polarization of M2-like macrophages by MSC exosomes was abolished in the presence of inhibitors of CD73 activity, adenosine receptors A2A and A2B, and AKT/ERK phosphorylation. These findings suggest that MSC exosomes promote M2-like macrophage polarization by catalyzing the production of adenosine, which then binds to adenosine receptors A2A and A2B to activate AKT/ERK-dependent signaling pathways. Thus, CD73 represents an additional critical attribute of MSC exosomes in mediating M2-like macrophage polarization. These findings have implications for predicting the immunomodulatory potency of MSC exosome preparations.
Collapse
Affiliation(s)
- Kristeen Ye Wen Teo
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
| | - Shipin Zhang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
| | - Jia Tong Loh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Hwee Weng Dennis Hey
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
- Faculty of Dentistry, National University of Singapore, 9 Lower Kent Ridge Road, Singapore 119085, Singapore
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, Singapore 117510, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
10
|
Zhang B, Zhang B, Lai RC, Sim WK, Lam KP, Lim SK. MSC-sEV Treatment Polarizes Pro-Fibrotic M2 Macrophages without Exacerbating Liver Fibrosis in NASH. Int J Mol Sci 2023; 24:ijms24098092. [PMID: 37175803 PMCID: PMC10179074 DOI: 10.3390/ijms24098092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC-sEV use is an important consideration. One concern is that MSC-sEVs have been shown to induce M2 macrophage polarization, which is known to be pro-fibrotic, potentially indicating contraindication in fibrotic diseases such as liver fibrosis. Despite this concern, previous studies have shown that MSC-sEVs alleviate high-fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH). To assess whether the pro-fibrotic M2 macrophage polarization induced by MSC-sEVs could worsen liver fibrosis, we first verified that our MSC-sEV preparations could promote M2 polarization in vitro prior to their administration in a mouse model of NASH. Our results showed that treatment with MSC-sEVs reduced or had comparable NAFLD Activity Scores and liver fibrosis compared to vehicle- and Telmisartan-treated animals, respectively. Although CD163+ M2 macrophages were increased in the liver, and serum IL-6 levels were reduced in MSC-sEV treated animals, our data suggests that MSC-sEV treatment was efficacious in reducing liver fibrosis in a mouse model of NASH despite an increase in pro-fibrotic M2 macrophage polarization.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Biyan Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wei Kian Sim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Kong Peng Lam
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Surgery, YLL School of Medicine, NUS, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
11
|
Ong HS, Riau AK, Yam GHF, Yusoff NZBM, Han EJY, Goh TW, Lai RC, Lim SK, Mehta JS. Mesenchymal Stem Cell Exosomes as Immunomodulatory Therapy for Corneal Scarring. Int J Mol Sci 2023; 24:7456. [PMID: 37108619 PMCID: PMC10144287 DOI: 10.3390/ijms24087456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Corneal scarring is a leading cause of worldwide blindness. Human mesenchymal stem cells (MSC) have been reported to promote corneal wound healing through secreted exosomes. This study investigated the wound healing and immunomodulatory effects of MSC-derived exosomes (MSC-exo) in corneal injury through an established rat model of corneal scarring. After induction of corneal scarring by irregular phototherapeutic keratectomy (irrPTK), MSC exosome preparations (MSC-exo) or PBS vehicle as controls were applied to the injured rat corneas for five days. The animals were assessed for corneal clarity using a validated slit-lamp haze grading score. Stromal haze intensity was quantified using in-vivo confocal microscopy imaging. Corneal vascularization, fibrosis, variations in macrophage phenotypes, and inflammatory cytokines were evaluated using immunohistochemistry techniques and enzyme-linked immunosorbent assays (ELISA) of the excised corneas. Compared to the PBS control group, MSC-exo treatment group had faster epithelial wound closure (0.041), lower corneal haze score (p = 0.002), and reduced haze intensity (p = 0.004) throughout the follow-up period. Attenuation of corneal vascularisation based on CD31 and LYVE-1 staining and reduced fibrosis as measured by fibronectin and collagen 3A1 staining was also observed in the MSC-exo group. MSC-exo treated corneas also displayed a regenerative immune phenotype characterized by a higher infiltration of CD163+, CD206+ M2 macrophages over CD80+, CD86+ M1 macrophages (p = 0.023), reduced levels of pro-inflammatory IL-1β, IL-8, and TNF-α, and increased levels of anti-inflammatory IL-10. In conclusion, topical MSC-exo could alleviate corneal insults by promoting wound closure and reducing scar development, possibly through anti-angiogenesis and immunomodulation towards a regenerative and anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Hon Shing Ong
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Evelina J. Y. Han
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Ruenn Chai Lai
- Institute of Medical Biology & Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sai Kiang Lim
- Institute of Medical Biology & Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Papait A, Silini AR, Gazouli M, Malvicini R, Muraca M, O’Driscoll L, Pacienza N, Toh WS, Yannarelli G, Ponsaerts P, Parolini O, Eissner G, Pozzobon M, Lim SK, Giebel B. Perinatal derivatives: How to best validate their immunomodulatory functions. Front Bioeng Biotechnol 2022; 10:981061. [PMID: 36185431 PMCID: PMC9518643 DOI: 10.3389/fbioe.2022.981061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Perinatal tissues, mainly the placenta and umbilical cord, contain a variety of different somatic stem and progenitor cell types, including those of the hematopoietic system, multipotent mesenchymal stromal cells (MSCs), epithelial cells and amnion epithelial cells. Several of these perinatal derivatives (PnDs), as well as their secreted products, have been reported to exert immunomodulatory therapeutic and regenerative functions in a variety of pre-clinical disease models. Following experience with MSCs and their extracellular vesicle (EV) products, successful clinical translation of PnDs will require robust functional assays that are predictive for the relevant therapeutic potency. Using the examples of T cell and monocyte/macrophage assays, we here discuss several assay relevant parameters for assessing the immunomodulatory activities of PnDs. Furthermore, we highlight the need to correlate the in vitro assay results with preclinical or clinical outcomes in order to ensure valid predictions about the in vivo potency of therapeutic PnD cells/products in individual disease settings.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ricardo Malvicini
- Department of Women and Children Health, University of Padova, Padova, Italy
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Maurizio Muraca
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Lorraine O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Wei Seong Toh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Michela Pozzobon
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|