1
|
Huang B, He Z. Protein Kinase D1 Correlates with Less Lymph Node Metastasis Risk, Enhanced 5-FU Sensitivity, and Better Prognosis in Colorectal Cancer. TOHOKU J EXP MED 2023; 260:305-314. [PMID: 37225445 DOI: 10.1620/tjem.2023.j042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein kinase D1 (PKD1) controls tumor growth and invasion of gastrointestinal tract-related cancers, but its prognostic role in colorectal cancer (CRC) is not clear yet. Therefore, this research intended to assess the potential of PKD1 as a marker for CRC patients' management, also to evaluate its effect on 5-fluorouracil (5-FU) chemosensitivity in CRC cell lines. PKD1 protein and mRNA expressions were measured by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction assays in 214 CRC patients, respectively. The PKD1 overexpression plasmids and negative control (NC) plasmids were transfected into the HCT-116 and LoVo cell lines followed by 0-16 μM 5-FU treatment. PKD1 protein (P < 0.001) and mRNA expressions (P < 0.001) were both descended in tumor tissues compared to tumor-adjacent tissues. Meanwhile, tumor PKD1 protein and mRNA expressions were both negatively related to lymph node metastasis, N stage, and tumor-node-metastasis (TNM) stage (all P < 0.05). Prognostically, high expressions of PKD1 protein and mRNA were linked with prolonged disease-free survival (DFS) and overall survival (OS) (all P < 0.05). After adjustment by multivariate Cox analyses, PKD1 mRNA high expression independently forecasted longer DFS [hazard ratio (HR) = 0.199, P = 0.002] and OS (HR = 0.212, P = 0.022). In vitro experiments revealed that PKD1 overexpression decreased the half maximal inhibitory concentration value of 5-FU in the HCT-116 (P = 0.016) and LoVo (P = 0.007) cell lines. PKD1 expression links with less lymph node metastasis risk and satisfied prognosis in CRC patients, which promotes CRC cell chemosensitivity to 5-FU chemosensitivity as well.
Collapse
Affiliation(s)
- Bo Huang
- Gastroduodenal Pancreas Surgery Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
| | - Zhuo He
- Gastroduodenal Pancreas Surgery Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University
| |
Collapse
|
2
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Futel M, Le Bouffant R, Buisson I, Umbhauer M, Riou JF. Characterization of potential TRPP2 regulating proteins in early Xenopus embryos. J Cell Biochem 2018; 119:10338-10350. [PMID: 30171710 DOI: 10.1002/jcb.27376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 11/10/2022]
Abstract
Transient receptor potential cation channel-2 (TRPP2) is a nonspecific Ca2+ -dependent cation channel with versatile functions including control of extracellular calcium entry at the plasma membrane, release of intracellular calcium ([Ca2+ ]i) from internal stores of endoplasmic reticulum, and calcium-dependent mechanosensation in the primary cilium. In early Xenopus embryos, TRPP2 is expressed in cilia of the gastrocoel roof plate (GRP) involved in the establishment of left-right asymmetry, and in nonciliated kidney field (KF) cells, where it plays a central role in early specification of nephron tubule cells dependent on [Ca2+ ]i signaling. Identification of proteins binding to TRPP2 in embryo cells can provide interesting clues about the mechanisms involved in its regulation during these various processes. Using mass spectrometry, we have therefore characterized proteins from late gastrula/early neurula stage embryos coimmunoprecipitating with TRPP2. Binding of three of these proteins, golgin A2, protein kinase-D1, and disheveled-2 has been confirmed by immunoblotting analysis of TRPP2-coprecipitated proteins. Expression analysis of the genes, respectively, encoding these proteins, golga2, prkd1, and dvl2 indicates that they are likely to play a role in these two regions. Golga2 and prkd1 are expressed at later stage in the developing pronephric tubule where golgin A2 and protein kinase-D1 might also interact with TRPP2. Colocalization experiments using exogenously expressed fluorescent versions of TRPP2 and dvl2 in GRP and KF reveal that these two proteins are generally not coexpressed, and only colocalized in discrete region of cells. This was observed in KF cells, but does not appear to occur in the apical ciliated region of GRP cells.
Collapse
Affiliation(s)
- Mélinée Futel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Isabelle Buisson
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie du Développement, UMR7622, 9 quai Saint-Bernard, Paris F-75005, France
| |
Collapse
|
4
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Moreau M, Néant I, Webb SE, Miller AL, Riou JF, Leclerc C. Ca(2+) coding and decoding strategies for the specification of neural and renal precursor cells during development. Cell Calcium 2015; 59:75-83. [PMID: 26744233 DOI: 10.1016/j.ceca.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023]
Abstract
During embryogenesis, a rise in intracellular Ca(2+) is known to be a widespread trigger for directing stem cells towards a specific tissue fate, but the precise Ca(2+) signalling mechanisms involved in achieving these pleiotropic effects are still poorly understood. In this review, we compare the Ca(2+) signalling events that appear to be one of the first steps in initiating and regulating both neural determination (neural induction) and kidney development (nephrogenesis). We have highlighted the necessary and sufficient role played by Ca(2+) influx and by Ca(2+) transients in the determination and differentiation of pools of neural or renal precursors. We have identified new Ca(2+) target genes involved in neural induction and we showed that the same Ca(2+) early target genes studied are not restricted to neural tissue but are also present in other tissues, principally in the pronephros. In this review, we also described a mechanism whereby the transcriptional control of gene expression during neurogenesis and nephrogenesis might be directly controlled by Ca(2+) signalling. This mechanism involves members of the Kcnip family such that a change in their binding properties to specific DNA sites is a result of Ca(2+) binding to EF-hand motifs. The different functions of Ca(2+) signalling during these two events illustrate the versatility of Ca(2+) as a second messenger.
Collapse
Affiliation(s)
- Marc Moreau
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Isabelle Néant
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, People's Republic of China; MBL, Woods Hole, MA, USA
| | - Jean-François Riou
- Université Pierre et Marie Curie-Paris VI, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France; CNRS, Equipe "Signalisation et Morphogenèse", UMR7622-Biologie du Développement, 9, quai Saint-Bernard, 75005 Paris, France
| | - Catherine Leclerc
- Université Toulouse 3, Centre de Biologie du Développement, 118 route de Narbonne, F31062 Toulouse Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| |
Collapse
|
6
|
Mogi K, Adachi T, Izumi S, Toyoizumi R. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo. Fluids Barriers CNS 2012; 9:9. [PMID: 22534239 PMCID: PMC3350447 DOI: 10.1186/2045-8118-9-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/25/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND It has long been known that cerebrospinal fluid (CSF), its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. METHODS The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter) into the fourth cerebral ventricle at embryonic/larval stages 30-53. RESULTS The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius). In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. CONCLUSIONS This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow in Xenopus albino larvae showed a largely consistent pattern, with the exception of individual differences in left-right asymmetrical flow in the third ventricle.
Collapse
Affiliation(s)
- Kazue Mogi
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya 2946, Hiratsuka city 259-1293, Japan.
| | | | | | | |
Collapse
|
7
|
Leclerc C, Webb SE, Miller AL, Moreau M. An increase in intracellular Ca2+ is involved in pronephric tubule differentiation in the amphibian Xenopus laevis. Dev Biol 2008; 321:357-67. [PMID: 18634776 DOI: 10.1016/j.ydbio.2008.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/08/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
The pronephros is the first kidney to develop and is the functional embryonic kidney in lower vertebrates. It has previously been shown that pronephric tubules can be induced to form ex vivo in ectodermal tissue by treatment with activin A and retinoic acid. In this study, we investigated the role of Ca(2+) signaling in the formation of the pronephric tubules both in intact Xenopus embryos and ex vivo. In the ex vivo system, retinoic acid but not activin A stimulated the generation of Ca(2+) transients during tubule formation. Furthermore, tubule differentiation could be induced by agents that increase the concentration of intracellular Ca(2+) in activin A-treated ectoderm. In addition, tubule formation was inhibited by loading the ectodermal tissue with the Ca(2+) chelator, BAPTA-AM prior to activin A/retinoic acid treatment. In intact embryos, Ca(2+) transients were also recorded during tubule formation, and photo-activation of the caged Ca(2+) chelator, diazo-2, localized to the pronephric domain, produced embryos with a shortened and widened tubule phenotype. In addition, the location of the Ca(2+) transients observed, correlated with the expression pattern of the specific pronephric tubule gene, XSMP-30. These data indicate that Ca(2+) might be a necessary signal in the process of tubulogenesis both ex vivo and in intact embryos.
Collapse
Affiliation(s)
- Catherine Leclerc
- Centre de Biologie du Développement, UMR 5547 and GDR 2688, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, Cedex 04, France
| | | | | | | |
Collapse
|
8
|
Abstract
Research using Xenopus laevis has made enormous contributions to our understanding of vertebrate development, control of the eukaryotic cell cycle and the cytoskeleton. One limitation, however, has been the lack of systematic genetic studies in Xenopus to complement molecular and cell biological investigations. Work with the closely related diploid frog Xenopus tropicalis is beginning to address this limitation. Here, we review the resources that will make genetic studies using X. tropicalis a reality.
Collapse
Affiliation(s)
- Samantha Carruthers
- Vertebrate Development and Genetics, The Morgan Building, Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | | |
Collapse
|