1
|
Karimian Z, Samiei L. ZnO nanoparticles efficiently enhance drought tolerance in Dracocephalum kotschyi through altering physiological, biochemical and elemental contents. FRONTIERS IN PLANT SCIENCE 2023; 14:1063618. [PMID: 36968426 PMCID: PMC10036906 DOI: 10.3389/fpls.2023.1063618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Using nanofertilizers in certain concentrations can be a novel method to alleviate drought stress effects in plants as a global climate problem. We aimed to determine the impacts of zinc nanoparticles (ZnO-N) and zinc sulfate (ZnSO4) fertilizers on the improvement of drought tolerance in Dracocephalum kotschyi as a medicinal-ornamental plant. Plants were treated with three doses of ZnO-N and ZnSO4 (0, 10, and 20 mg/l) under two levels of drought stress [50% and 100% field capacity (FC)]. Relative water content (RWC), electrolyte conductivity (EC), chlorophyll, sugar, proline, protein, superoxide dismutase (SOD), polyphenol oxidase (PPO) and, guaiacol peroxidase (GPO) were measured. Moreover, the concentration of some elements interacting with Zn was reported using the SEM-EDX method. Results indicated that foliar fertilization of D. kotschyi under drought stress with ZnO-N decreased EC, while ZnSO4 application was less effective. Moreover, sugar and proline content as well as activity of SOD and GPO (and to some extent PPO) in treated plants by 50% FC, increased under the influence of ZnO-N. ZnSO4 application could increase chlorophyll and protein content and PPO activity in this plant under drought stress. Based on the results, ZnO-N and then ZnSO4 improved the drought tolerance of D. kotschyi through their positive effects on physiological and biochemical attributes changing the concentration of Zn, P, Cu, and Fe. Accordingly, due to the increased sugar and proline content and also antioxidant enzyme activity (SOD, GPO, and to some extent PPO) on enhancing drought tolerance in this plant, ZnO-N fertilization is advisable.
Collapse
Affiliation(s)
- Zahra Karimian
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
2
|
Blay C, Planes S, Ky CL. Crossing Phenotype Heritability and Candidate Gene Expression in Grafted Black-Lipped Pearl Oyster Pinctada margaritifera, an Animal Chimera. J Hered 2019; 109:510-519. [PMID: 29584922 DOI: 10.1093/jhered/esy015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022] Open
Abstract
Grafting mantle tissue of a donor pearl oyster into the gonad of a recipient oyster results in the formation of a chimera, the pearl sac. The phenotypic variations of this chimera are hypothesized to be the result of interactions between the donor and recipient genomes. In this study, the heritability of phenotypic variation and its association with gene expression were investigated for the first time during Pinctada margaritifera pearl production. Genetic variance was evaluated at different levels, 1) before the graft operation (expression in graft tissue), 2) after grafting (pearl sac tissue expression in chimera), and 3) on the product of the graft (pearl phenotype traits) based on controlled biparental crosses and the F1 generation. Donor-related genetic parameter estimates clearly demonstrate heritability for nacre weight and thickness, darkness and color, and surface defects and grade, which signifies a genetic basis in the donor oyster. In graft relative gene expression, the value of heritability was superior to 0.20 in for almost all genes; whereas in pearl sac, heritability estimates were low (h2 < 0.10; except for CALC1 and Aspein). Pearl sac expression seems to be more influenced by residual variance than the graft, which can be explained by environmental effects that influence pearls sac gene expression and act as a recipient additive genetic component. The interactions between donor and recipient are very complex, and further research is required to understand the role of the recipient oysters on pearl phenotypic and gene expression variances.
Collapse
Affiliation(s)
- Carole Blay
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française.,PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, Perpignan Cedex, France
| | - Chin-Long Ky
- Ifremer, UMR EIO 241, Labex Corail, Centre du Pacifique, Taravao, Tahiti, Polynésie Française
| |
Collapse
|
3
|
Dalakouras A, Dadami E, Bassler A, Zwiebel M, Krczal G, Wassenegger M. Replicating Potato spindle tuber viroid mediates de novo methylation of an intronic viroid sequence but no cleavage of the corresponding pre-mRNA. RNA Biol 2015; 12:268-75. [PMID: 25826660 PMCID: PMC4615544 DOI: 10.1080/15476286.2015.1017216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 10/23/2022] Open
Abstract
In plants, Potato spindle tuber viroid (PSTVd) replication triggers post-transcriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) of homologous RNA and DNA sequences, respectively. PTGS predominantly occurs in the cytoplasm, but nuclear PTGS has been also reported. In this study, we investigated whether the nuclear replicating PSTVd is able to trigger nuclear PTGS. Transgenic tobacco plants carrying cytoplasmic and nuclear PTGS sensor constructs were PSTVd-infected resulting in the generation of abundant PSTVd-derived small interfering RNAs (vd-siRNAs). Northern blot analysis revealed that, in contrast to the cytoplasmic sensor, the nuclear sensor transcript was not targeted for RNA degradation. Bisulfite sequencing analysis showed that the nuclear PTGS sensor transgene was efficiently targeted for RdDM. Our data suggest that PSTVd fails to trigger nuclear PTGS, and that RdDM and nuclear PTGS are not necessarily coupled.
Collapse
Affiliation(s)
| | - Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Alexandra Bassler
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
4
|
Zhao M, San León D, Delgadillo MO, García JA, Simón-Mateo C. Virus-induced gene silencing in transgenic plants: transgene silencing and reactivation associate with two patterns of transgene body methylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:440-452. [PMID: 24916614 DOI: 10.1111/tpj.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/09/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so-called virus-induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5' end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3' end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3' end, and an overall increase in CG methylation in the 5' end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas or (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Dadami E, Dalakouras A, Zwiebel M, Krczal G, Wassenegger M. An endogene-resembling transgene is resistant to DNA methylation and systemic silencing. RNA Biol 2014; 11:934-41. [PMID: 25180820 PMCID: PMC4179966 DOI: 10.4161/rna.29623] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
In plants, endogenes are less prone to RNA silencing than transgenes. While both can be efficiently targeted by small RNAs for post-transcriptional gene silencing (PTGS), generally only transgene PTGS is accompanied by transitivity, RNA-directed DNA methylation (RdDM) and systemic silencing. In order to investigate whether a transgene could mimick an endogene and thus be less susceptible to RNA silencing, we generated an intron-containing, endogene-resembling GREEN FLUORESCENT PROTEIN (GFP) transgene (GFP(endo)). Upon agroinfiltration of a hairpin GFP (hpF) construct, transgenic Nicotiana benthamiana plants harboring GFP(endo) (Nb-GFP(endo)) were susceptible to local PTGS. Yet, in the local area, PTGS was not accompanied by RdDM of the GFP(endo) coding region. Importantly, hpF-agroinfiltrated Nb-GFP(endo) plants were resistant to systemic silencing. For reasons of comparison, transgenic N. benthamiana plants (Nb-GFP(cDNA)) carrying a GFP cDNA transgene (GFP(cDNA)) were included in the analysis. HpF-agroinfiltrated Nb-GFP(cDNA) plants exhibited local PTGS and RdDM. In addition, systemic silencing was established in Nb-GFP(cDNA) plants. In agreement with previous reports using grafted scions, in systemically silenced tissue, siRNAs mapping to the 3' of GFP were predominantly detectable by Northern blot analysis. Yet, in contrast to other reports, in systemically silenced leaves, PTGS was also accompanied by dense RdDM comprising the entire GFP(cDNA) coding region. Overall, our analysis indicated that cDNA transgenes are prone to systemic PTGS and RdDM, while endogene-resembling ones are resistant to RNA silencing.
Collapse
Affiliation(s)
- Elena Dadami
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | | | - Michele Zwiebel
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH; AlPlanta-Institute for Plant Research; Neustadt, Germany
- Centre for Organismal Studies (COS) Heidelberg; University of Heidelberg; Heidelberg, Germany
| |
Collapse
|
6
|
Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. PROTOPLASMA 2014; 251:591-601. [PMID: 24150424 DOI: 10.1007/s00709-013-0558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 05/10/2023]
Abstract
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
Collapse
Affiliation(s)
- Balusamy Jaganath
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li J, Wang Y, Zhang L, Liu B, Cao L, Qi Z, Chen L. Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4851-62. [PMID: 24006424 PMCID: PMC3830474 DOI: 10.1093/jxb/ert266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chimeras have been used to study the transmission of genetic material and the resulting genetic variation. In this study, two chimeras, TCC and TTC (where the origin of the outer, middle, and inner cell layers, respectively, of the shoot apical meristem is designated by a 'T' for tuber mustard and 'C' for red cabbage), as well as their asexual and sexual progeny, were used to analyse the mechanism and the inheritance of the variation induced by grafting. Asexual TCC progeny were obtained by adventitious shoot regeneration, while TTC sexual progeny were produced by self-crossing. This study observed similar morphological variations in both the asexual and sexual progeny, including changes in leaf shape and the pattern of shoot apical meristem termination. The leaf shape variation was stable, while the rate of shoot apical meristem termination in the TTC progenies decreased from 74.52% to 3.01% after three successive rounds of self-crossing. Specific red cabbage small RNAs were found in the asexually regenerated plants (rTTT) that were not present in TTT, indicating that small RNAs might be transmitted from red cabbage to tuber mustard during grafting. Moreover, in parallel with the variations in phenotype observed in the progeny, some conserved miRNAs were differentially expressed in rTTT and TTT, which correlated with changes in expression of their target genes. These results suggest that the change in small RNA expression induced by grafting may be an important factor for introducing graft-induced genetic variations, providing a basis for further investigating the mechanism of graft-induced genetic variation through epigenetics.
Collapse
Affiliation(s)
- Junxing Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, PR China
- * These authors contributed equally to this manuscript
| | - Yan Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
- * These authors contributed equally to this manuscript
| | - Langlang Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Liwen Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, PR China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Agriculture Experiment Station, Zhejiang University, Hangzhou 310058, PR China
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Biotechnology, Agricultural Ministry of China, Hangzhou 310058, PR China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Kasai A, Sano T, Harada T. Scion on a stock producing siRNAs of potato spindle tuber viroid (PSTVd) attenuates accumulation of the viroid. PLoS One 2013; 8:e57736. [PMID: 23469061 PMCID: PMC3585205 DOI: 10.1371/journal.pone.0057736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/24/2013] [Indexed: 02/02/2023] Open
Abstract
Plants can attenuate the replication of plant viruses and viroids by RNA silencing induced by virus and viroid infection. In higher plants, silencing signals such as small interfering RNAs (siRNAs) produced by RNA silencing can be transported systemically through phloem, so it is anticipated that antiviral siRNA signals produced in a stock would have the potential to attenuate propagation of viruses or viroids in the scion. To test whether this is indeed the case, we prepared transgenic tobacco (Nicotiana benthamiana) expressing a hairpin RNA (hpRNA) of Potato spindle tuber viroid (PSTVd) in companion cells by using a strong companion cell-specific promoter. A grafting experiment of the wild type tobacco scion on the top of the transgenic tobacco stock revealed that accumulation of PSTVd challenge-inoculated into the scion was apparently attenuated compared to the control grafted plants. These results indicate that genetically modified rootstock expressing viroid-specific siRNAs can attenuate viroid accumulation in a non-genetically modified scion grafted on the stock.
Collapse
Affiliation(s)
- Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Takeo Harada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
9
|
Ali EM, Tabei Y, Kobayashi K, Yamaoka N, Nishiguchi M. Molecular analysis of transgenic melon plants showing virus resistance conferred by direct repeat of movement gene of Cucumber green mottle mosaic virus. PLANT CELL REPORTS 2012; 31:1371-1377. [PMID: 22350408 DOI: 10.1007/s00299-012-1237-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/18/2012] [Accepted: 02/03/2012] [Indexed: 05/27/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of melon plants worldwide. For effective control of this virus using the transgenic approach, the direct repeat of the movement protein gene of CGMMV was used for transforming melon plants by Agrobacterium tumefaciens. PCR and Southern blot analyses of T₃ confirmed that they carried the transgene. Northern blot analysis with total RNA showed that transgene transcript RNA as well as siRNA was observed in all plants tested. Separate leaves or individual plants were inoculated with CGMMV and subjected to ELISA and RNA blot analysis using the coat protein gene probe of the virus. Compared to nontransgenic control, these plants were shown to have high virus resistance. Furthermore, cytosine of the transgene DNA in the plants was methylated. Thus, these results reveal that the transgenic lines were highly resistant to the virus through RNA silencing. Key message High virus resistance was obtained in transgenic melon plants with direct repeat of movement protein gene of Cucumber green mottle mosaic tobamovirus through RNA silencing.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Southern
- Cucumovirus/genetics
- Cucurbitaceae/genetics
- Cucurbitaceae/virology
- DNA Methylation/genetics
- DNA, Plant/metabolism
- Disease Resistance/genetics
- Gene Expression Regulation, Plant
- Genes, Viral/genetics
- Plant Diseases/virology
- Plant Viral Movement Proteins/genetics
- Plants, Genetically Modified
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Transgenes/genetics
Collapse
Affiliation(s)
- Emran Md Ali
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | | | | | | | | |
Collapse
|
10
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Inheritable variation induced by plant grafting is a universal phenomenon; however, its mechanism has always been a controversial subject. In recent years, research on horizontal transfer of genetic materials between stock and scion has made great progress. The latest studies have found that genetic information in grafted plants is transported through plasmodesma and phloem to modulate the growth and development of the scion plants. Furthermore, non-coding RNAs could induce epigenetic modification, which facilitates plants to adapt to the grafting-caused stress. This article focuses on the review of recent advances in the induction and maintenance of the graft-induced genetic variation and could be helpful in thoroughly understanding the mechanism.
Collapse
|
12
|
Abstract
RNA silencing is a sequence-specific RNA degradation mechanism conserved in eukaryotes including fungi, plants, and animals. One of the three RNA silencing pathways is DNA methylation which is the result of interaction between DNA and siRNA, a hallmark of RNA silencing. Bisulfite sequencing can be very powerful for DNA methylation analysis in this context. This method includes DNA extraction, digestion of DNA with restriction enzyme, treatment of DNA with bisulfite, PCR amplification of DNA, cloning of amplified DNA fragments, sequencing of DNA fragments, and analysis of DNA sequences. Based on this method, increased levels of cytosine methylation were obtained in both symmetrical (CpG, CpNpG) and non-symmetrical (CpHpH) contexts in silenced lines of transgenic plants (CG>CNG>CHH), while the methylation levels were low in nonsilenced, over-expressing lines. Through grafting, RNA silencing was induced in the non-silenced scions from silenced rootstocks; however, the methylation level of DNA in the scions did not increase.
Collapse
Affiliation(s)
- Nazmul Haque
- Faculty of Agriculture, Ehime University, 790-8566 Matsuyama, Japan
| | | |
Collapse
|
13
|
Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Torello Marinoni D, Barberis M, Maghuly F, Laimer M, Gribaudo I. Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 2009; 19:17-27. [PMID: 19507046 DOI: 10.1007/s11248-009-9289-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Eight transgenic grapevine lines transformed with the coat protein gene of Grapevine fanleaf virus (GFLV-CP) were analyzed for a correlation between transgene expression, siRNAs production and DNA methylation. Bisulphite genome sequencing was used for a comprehensive analysis of DNA methylation. Methylated cytosine residues of CpG and CpNpG sites were detected in the GFLV-CP transgene, in the T7 terminator and in the 35S promoter of three grapevines without transgene expression, but no detectable level of siRNAs was recorded in these lines. The detailed analysis of 8 lines revealed the complex arrangements of T-DNA and integrated binary vector sequences as crucial factors that influence transgene expression. After inoculation with GFLV, no change in the levels of cytosine methylation was observed, but transgenic and untransformed plants produced short siRNAs (21-22 nt) indicating that the grapevine plants responded to GFLV infection by activating a post-transcriptional gene silencing mechanism.
Collapse
Affiliation(s)
- Giorgio Gambino
- Plant Virology Institute CNR (IVV), Grugliasco Unit., 10095 Grugliasco-TO, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lunerová-Bedrichová J, Bleys A, Fojtová M, Khaitová L, Depicker A, Kovarík A. Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1049-62. [PMID: 18315537 DOI: 10.1111/j.1365-313x.2008.03475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We have studied the inheritance of the epigenetic state of tobacco transgenes whose expression was post-transcriptionally silenced by an invertedly repeated silencer locus. We show that, in hybrids, the coding region of the target neomycin phosphotransferase (nptII) gene was almost exclusively methylated at CG configurations, and dense non-CG methylation occurred in the 3' untranslated region. Homologous sequences in the silencer locus were heavily methylated at both CG and non-CG motifs. After segregation of the silencer locus, the CG methylation but not the non-CG methylation of the target genes was transmitted to the progeny. In the segregants, we observed an overall increase of CG methylation in the target genes, associated with a re-distribution from the 3' end of the coding region towards the middle. This pattern was inherited with some fluctuation for at least two additional generations in the absence of a detectable T-DNA-derived small RNA fraction. Thus CG methylation is not cleared during meiosis and may be inherited over generations without RNA signals being present. These epi-allelic variants re-expressed the reporter gene immediately after segregation of the trigger, showing that relatively dense CG methylation (approximately 60-80%) imprinted on most of the coding region (>500 bp) did not reduce expression compared with the parental non-methylated locus. We propose that the genic CG methylation seen in euchromatic regions of the genome may originate from ancient post-transcriptional gene silencing events as a result of adventitiously produced methylation-directing RNA molecules.
Collapse
Affiliation(s)
- Jana Lunerová-Bedrichová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., CZ-61265 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|