1
|
McGregor N, Yin V, Tung CC, Van Petegem F, Brumer H. Crystallographic insight into the evolutionary origins of xyloglucan endotransglycosylases and endohydrolases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:651-670. [PMID: 27859885 PMCID: PMC5315667 DOI: 10.1111/tpj.13421] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 05/22/2023]
Abstract
The xyloglucan endotransglycosylase/hydrolase (XTH) gene family encodes enzymes of central importance to plant cell wall remodeling. The evolutionary history of plant XTH gene products is incompletely understood vis-à-vis the larger body of bacterial endoglycanases in Glycoside Hydrolase Family 16 (GH16). To provide molecular insight into this issue, high-resolution X-ray crystal structures and detailed enzyme kinetics of an extant transitional plant endoglucanase (EG) were determined. Functionally intermediate between plant XTH gene products and bacterial licheninases of GH16, Vitis vinifera EG16 (VvEG16) effectively catalyzes the hydrolysis of the backbones of two dominant plant cell wall matrix glycans, xyloglucan (XyG) and β(1,3)/β(1,4)-mixed-linkage glucan (MLG). Crystallographic complexes with extended oligosaccharide substrates reveal the structural basis for the accommodation of both unbranched, mixed-linked (MLG) and highly decorated, linear (XyG) polysaccharide chains in a broad, extended active-site cleft. Structural comparison with representative bacterial licheninases, a xyloglucan endotranglycosylase (XET), and a xyloglucan endohydrolase (XEH) outline the functional ramifications of key sequence deletions and insertions across the phylogenetic landscape of GH16. Although the biological role(s) of EG16 orthologs remains to be fully resolved, the present biochemical and tertiary structural characterization provides key insight into plant cell wall enzyme evolution, which will continue to inform genomic analyses and functional studies across species.
Collapse
Affiliation(s)
- Nicholas McGregor
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Victor Yin
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ching-Chieh Tung
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia,
2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia,
2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology,
University of British Columbia, 2350 Health Sciences Mall, Vancouver, British
Columbia V6T 1Z3, Canada
- Department of Botany, University of British Columbia, 6270
University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
|
3
|
Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Peña-Cortés H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 2016; 12:39. [PMID: 26848290 PMCID: PMC4723623 DOI: 10.1007/s11306-015-0927-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/10/2015] [Indexed: 11/06/2022]
Abstract
Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.
Collapse
Affiliation(s)
- Alvaro Cuadros-Inostroza
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- MetasysX, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Simón Ruíz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Enrique González
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Aenne Eckardt
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hugo Peña-Cortés
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
4
|
Costantini L, Malacarne G, Lorenzi S, Troggio M, Mattivi F, Moser C, Grando MS. New candidate genes for the fine regulation of the colour of grapes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4427-40. [PMID: 26071528 PMCID: PMC4507754 DOI: 10.1093/jxb/erv159] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the last decade, great progress has been made in clarifying the main determinants of anthocyanin accumulation in grape berry skin. However, the molecular details of the fine variation among cultivars, which ultimately contributes to wine typicity, are still not completely understood. To shed light on this issue, the grapes of 170 F1 progeny from the cross 'Syrah'×'Pinot Noir' were characterized at the mature stage for the content of 15 anthocyanins during four growing seasons. This huge data set was used in combination with a dense genetic map to detect genomic regions controlling the anthocyanin pathway both at key enzymatic points and at particular branches. Genes putatively involved in fine tuning the global regulation of anthocyanin biosynthesis were identified by exploring the gene predictions in the QTL (quantitative trait locus) confidence intervals and their expression profile during berry development in offspring with contrasting anthocyanin accumulation. New information on some aspects which had scarcely been investigated so far, such as anthocyanin transport into the vacuole, or completely neglected, such as acylation, is provided. These genes represent a valuable resource in grapevine molecular-based breeding programmes to improve both fruit and wine quality and to tailor wine sensory properties according to consumer demand.
Collapse
Affiliation(s)
- Laura Costantini
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Giulia Malacarne
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Silvia Lorenzi
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Claudio Moser
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| | - Maria Stella Grando
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige, Trento, Italy
| |
Collapse
|
5
|
Miguel A, de Vega-Bartol J, Marum L, Chaves I, Santo T, Leitão J, Varela MC, Miguel CM. Characterization of the cork oak transcriptome dynamics during acorn development. BMC PLANT BIOLOGY 2015; 15:158. [PMID: 26109289 PMCID: PMC4479327 DOI: 10.1186/s12870-015-0534-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. RESULTS A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. CONCLUSIONS To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.
Collapse
Affiliation(s)
- Andreia Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José de Vega-Bartol
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Liliana Marum
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- KLÓN, Innovative Technologies from Cloning, Biocant Park, Núcleo 4, Lote 4A, 3060-197, Cantanhede, Portugal.
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tatiana Santo
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - José Leitão
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - Maria Carolina Varela
- INIAV- Instituto Nacional de Investigação Agrária e Veterinária, IP, Quinta do, Marquês, Oeiras, 2780-159, Portugal.
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
6
|
Guo Y, Lin H, Liu Z, Zhao Y, Guo X, Li K. SSR and SRAP marker-based linkage map of Vitis vinifera L. BIOTECHNOL BIOTEC EQ 2014; 28:221-229. [PMID: 26019507 PMCID: PMC4434142 DOI: 10.1080/13102818.2014.907996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/09/2013] [Indexed: 11/13/2022] Open
Abstract
An F1 population was created by the cross ‘87-1’ × ‘9-22’. The female parent ‘87-1’ was an extremely early maturing cultivar with strong flavour. The male parent was an excellent breeding line producing large berries maturing late. The mapping population included 149 randomly chosen individuals. Molecular genetic map for each parent and the consensus map were constructed using simple sequence repeat and sequence-related amplified polymorphism markers by software JoinMap 3.0. The ‘87-1’ map covers a total length of 1272.9 cM distributed in 21 linkage groups and consists of 163 molecular markers with an average distance between adjacent markers of 8.9 cM. The ‘9-22’ map covers a total length of 1267.4 cM distributed in 20 linkage groups and consists of 158 molecular markers with an average distance between adjacent markers of 9.1 cM. The consensus map covers a total length of 1537.1 cM distributed in 21 linkage groups and one doublet and consists of 217 molecular markers with an average distance of 7.8 cM between adjacent markers. The length of the linkage groups is 69.8 cM on average. The map covers the 19 chromosomes of the Vitis genome and can lay a solid foundation for further studies such as quantative trait loci (QTL) mapping of correlated traits and marker-assisted selection.
Collapse
Affiliation(s)
- Yinshan Guo
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| | - Hong Lin
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| | - Zhendong Liu
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| | - Yuhui Zhao
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| | - Xiuwu Guo
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| | - Kun Li
- Pomology Department, College of Horticulture, Shenyang Agricultural University, Shenyang , P.R. China
| |
Collapse
|
7
|
Wang X, Kayesh E, Han J, Liu C, Wang C, Song C, Ge A, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 2014; 41:4397-412. [PMID: 24728608 DOI: 10.1007/s11033-014-3311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Collapse
Affiliation(s)
- Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, François P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Péros JP, This P. New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC PLANT BIOLOGY 2013; 13:217. [PMID: 24350702 PMCID: PMC3878267 DOI: 10.1186/1471-2229-13-217] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/10/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND In grapevine, as in other fruit crops, fruit size and seed content are key components of yield and quality; however, very few Quantitative Trait Loci (QTLs) for berry weight and seed content (number, weight, and dry matter percentage) have been discovered so far. To identify new stable QTLs for marker-assisted selection and candidate gene identification, we performed simultaneous QTL detection in four mapping populations (seeded or seedless) with various genetic backgrounds. RESULTS For berry weight, we identified five new QTLs, on linkage groups (LGs) 1, 8, 11, 17 and 18, in addition to the known major QTL on LG 18. The QTL with the largest effect explained up to 31% of total variance and was found in two genetically distant populations on LG 17, where it colocalized with a published putative domestication locus. For seed traits, besides the major QTLs on LG 18 previously reported, we found four new QTLs explaining up to 51% of total variance, on LGs 4, 5, 12 and 14. The previously published QTL for seed number on LG 2 was found related in fact to sex. We found colocalizations between seed and berry weight QTLs only for the major QTL on LG 18 in a seedless background, and on LGs 1 and 13 in a seeded background. Candidate genes belonging to the cell number regulator CNR or cytochrome P450 families were found under the berry weight QTLs on LGs 1, 8, and 17. The involvement of these gene families in fruit weight was first described in tomato using a QTL-cloning approach. Several other interesting candidate genes related to cell wall modifications, water import, auxin and ethylene signalling, transcription control, or organ identity were also found under berry weight QTLs. CONCLUSION We discovered a total of nine new QTLs for berry weight or seed traits in grapevine, thereby increasing more than twofold the number of reliable QTLs for these traits available for marker assisted selection or candidate gene studies. The lack of colocalization between berry and seed QTLs suggests that these traits may be partly dissociated.
Collapse
Affiliation(s)
- Agnès Doligez
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Yves Bertrand
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Marc Farnos
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Michel Grolier
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Charles Romieu
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Florence Esnault
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Sonia Dias
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Gilles Berger
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Pierre François
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Thierry Pons
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Patrick Ortigosa
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Catherine Roux
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Cléa Houel
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Valérie Laucou
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Roberto Bacilieri
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Jean-Pierre Péros
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| | - Patrice This
- INRA, UMR AGAP, Batiment 21 2 place Viala, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
9
|
Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellín P, Oliveros JC, Martínez-Zapater JM. Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One 2012; 7:e39547. [PMID: 22768087 PMCID: PMC3386993 DOI: 10.1371/journal.pone.0039547] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/22/2012] [Indexed: 11/24/2022] Open
Abstract
Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.
Collapse
Affiliation(s)
- Diego Lijavetzky
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pablo Carbonell-Bejerano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
- * E-mail:
| | - Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
| | - Gema Bravo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Flores
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - José Fenoll
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Pilar Hellín
- Área de Biotecnología, Estación Sericícola, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Murcia, Spain
| | - Juan Carlos Oliveros
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José M. Martínez-Zapater
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas -Universidad de La Rioja-Gobierno de La Rioja, Logroño, La Rioja, Spain
| |
Collapse
|
10
|
Grimplet J, Van Hemert J, Carbonell-Bejerano P, Díaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martínez-Zapater JM. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 2012; 5:213. [PMID: 22554261 PMCID: PMC3419625 DOI: 10.1186/1756-0500-5-213] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. RESULTS In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, "Can we uniquely map 8X predicted genes to 12X predicted genes?" The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. CONCLUSIONS The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).
Collapse
Affiliation(s)
- Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), CCT, C/Madre de Dios 51, Logroño, España.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yin Y, Zhang X, Fang Y, Pan L, Sun G, Xin C, Ba Abdullah MM, Yu X, Hu S, Al-Mssallem IS, Yu J. High-throughput sequencing-based gene profiling on multi-staged fruit development of date palm (Phoenix dactylifera, L.). PLANT MOLECULAR BIOLOGY 2012; 78:617-626. [PMID: 22351158 PMCID: PMC3313043 DOI: 10.1007/s11103-012-9890-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/22/2012] [Indexed: 05/30/2023]
Abstract
Date palm provides both staple food and gardening for the Middle East and North African countries for thousands of years. Its fruits have diversified significantly, such as nutritional content, size, length, weight color, and ripping process. Dates palm represent an excellent model system for the study of fruit development and diversity of fruit-bearing palm species that produce the most versatile fruit types as compared to other plant families. Using Roche/454 GS FLX instrument, we acquired 7.6 million sequence tags from seven fruiting stages (F1-F7). Over 99% of the raw reads are assembled, and the numbers of isotigs (equivalent to transcription units or unigenes) range from 30,684 to 40,378 during different fruiting stages. We annotated isotigs using BLASTX and BLASTN, and mapped 74% of the isotigs to known functional sequences or genes. Based on gene ontology categorization and pathway analysis, we have identified 10 core cell division genes, 18 ripening related genes, and 7 starch metabolic enzymes, which are involved as nutrition storage and sugar/starch metabolisms. We noticed that many metabolic pathways vary significantly during fruit development, and carbohydrate metabolism (especially sugar synthesis) is particularly prominent during fruit ripening. Transcriptomics study on various fruiting stages of date palm shows complicated metabolic activities during fruit development, ripening, synthesis and accumulation of starch enzymes and other related sugars. Most Genes are highly expressed in early stages of development, while late developmental stages are critical for fruit ripening including most of the metabolism associated ones.
Collapse
Affiliation(s)
- Yuxin Yin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Xiaowei Zhang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yongjun Fang
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Linlin Pan
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Gaoyuan Sun
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Chengqi Xin
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
- Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing, China
| | - Mohammed M. Ba Abdullah
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
| | - Xiaoguang Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Songnian Hu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Ibrahim S. Al-Mssallem
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hssa, Hofuf Kingdom of Saudi Arabia
| | - Jun Yu
- Joint Center for Genomics Research (JCGR), King Abdulaziz City for Science and Technology (KACST) and Chinese Academy of Sciences (CAS), Riyadh, Kingdom of Saudi Arabia
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
12
|
Wang XC, Guo L, Shangguan LF, Wang C, Yang G, Qu SC, Fang JG. Analysis of expressed sequence tags from grapevine flower and fruit and development of simple sequence repeat markers. Mol Biol Rep 2012; 39:6825-34. [DOI: 10.1007/s11033-012-1507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
13
|
Bertazzon N, Raiola A, Castiglioni C, Gardiman M, Angelini E, Borgo M, Ferrari S. Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference. PLANT CELL REPORTS 2012; 31:133-43. [PMID: 21932028 DOI: 10.1007/s00299-011-1147-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 05/23/2023]
Abstract
Grapevine is an economically important crop, and the recent completion of its genome makes it possible to study the function of specific genes through reverse genetics. However, the analysis of gene function by RNA interference (RNAi) in grapevine is difficult, because the generation of stable transgenic plants has low efficiency and is time consuming. Recently, transient expression of genes in grapevine leaves has been obtained by Agrobacterium tumefaciens infiltration (agroinfiltration). We therefore tested the possibility to silence grapevine genes by agroinfiltration of RNAi constructs. A construct to express a double strand RNA (dsRNA) corresponding to the defense-related gene VvPGIP1, encoding a polygalacturonase-inhibiting protein (PGIP), was obtained and transiently expressed by agroinfiltration in leaves of grapevine plants grown in vitro. Expression of VvPGIP1 and accumulation of PGIP activity were strongly induced by infiltration with control bacteria, but not with bacteria carrying the dsRNA construct, indicating that the gene was efficiently silenced. In contrast, expression of another defense-related gene, VST1, encoding a stilbene synthase, was unaffected by the dsRNA construct. We have therefore demonstrated the possibility of transient down-regulation of grapevine genes by agroinfiltration of constructs for the expression of dsRNA. This system can be employed to evaluate the effectiveness of constructs that can be subsequently used to generate stable RNAi transgenic plants.
Collapse
Affiliation(s)
- Nadia Bertazzon
- CRA-VIT Centro di ricerca per la viticoltura, Conegliano, TV, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Nieuwenhuizen NJ, Maddumage R, Tsang GK, Fraser LG, Cooney JM, De Silva HN, Green S, Richardson KA, Atkinson RG. Mapping, complementation, and targets of the cysteine protease actinidin in kiwifruit. PLANT PHYSIOLOGY 2012; 158:376-88. [PMID: 22039217 PMCID: PMC3252086 DOI: 10.1104/pp.111.187989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/26/2011] [Indexed: 05/27/2023]
Abstract
Cysteine proteases (CPs) accumulate to high concentration in many fruit, where they are believed to play a role in fungal and insect defense. The fruit of Actinidia species (kiwifruit) exhibit a range of CP activities (e.g. the Actinidia chinensis variety YellowA shows less than 2% of the activity of Actinidia deliciosa variety Hayward). A major quantitative trait locus for CP activity was mapped to linkage group 16 in a segregating population of A. chinensis. This quantitative trait locus colocated with the gene encoding actinidin, the major acidic CP in ripe Hayward fruit encoded by the ACT1A-1 allele. Sequence analysis indicated that the ACT1A locus in the segregating A. chinensis population contained one functional allele (A-2) and three nonfunctional alleles (a-3, a-4, and a-5) each containing a unique frameshift mutation. YellowA kiwifruit contained two further alleles: a-6, which was nonfunctional because of a large insertion, and a-7, which produced an inactive enzyme. Site-directed mutagenesis of the act1a-7 protein revealed a residue that restored CP activity. Expression of the functional ACT1A-1 cDNA in transgenic plants complemented the natural YellowA mutations and partially restored CP activity in fruit. Two consequences of the increase in CP activity were enhanced degradation of gelatin-based jellies in vitro and an increase in the processing of a class IV chitinase in planta. These results provide new insight into key residues required for CP activity and the in vivo protein targets of actinidin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ross G. Atkinson
- New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1142, New Zealand (N.J.N., R.M., G.K.T., L.G.F., H.N.D.S., S.G., K.A.R., R.G.A.); New Zealand Institute for Plant and Food Research Limited, Ruakura, Hamilton 3240, New Zealand (J.M.C.)
| |
Collapse
|
15
|
Tillett RL, Ergül A, Albion RL, Schlauch KA, Cramer GR, Cushman JC. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC PLANT BIOLOGY 2011; 11:86. [PMID: 21592389 PMCID: PMC3224124 DOI: 10.1186/1471-2229-11-86] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/18/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Abiotic stresses, such as water deficit and soil salinity, result in changes in physiology, nutrient use, and vegetative growth in vines, and ultimately, yield and flavor in berries of wine grape, Vitis vinifera L. Large-scale expressed sequence tags (ESTs) were generated, curated, and analyzed to identify major genetic determinants responsible for stress-adaptive responses. Although roots serve as the first site of perception and/or injury for many types of abiotic stress, EST sequencing in root tissues of wine grape exposed to abiotic stresses has been extremely limited to date. To overcome this limitation, large-scale EST sequencing was conducted from root tissues exposed to multiple abiotic stresses. RESULTS A total of 62,236 expressed sequence tags (ESTs) were generated from leaf, berry, and root tissues from vines subjected to abiotic stresses and compared with 32,286 ESTs sequenced from 20 public cDNA libraries. Curation to correct annotation errors, clustering and assembly of the berry and leaf ESTs with currently available V. vinifera full-length transcripts and ESTs yielded a total of 13,278 unique sequences, with 2302 singletons and 10,976 mapped to V. vinifera gene models. Of these, 739 transcripts were found to have significant differential expression in stressed leaves and berries including 250 genes not described previously as being abiotic stress responsive. In a second analysis of 16,452 ESTs from a normalized root cDNA library derived from roots exposed to multiple, short-term, abiotic stresses, 135 genes with root-enriched expression patterns were identified on the basis of their relative EST abundance in roots relative to other tissues. CONCLUSIONS The large-scale analysis of relative EST frequency counts among a diverse collection of 23 different cDNA libraries from leaf, berry, and root tissues of wine grape exposed to a variety of abiotic stress conditions revealed distinct, tissue-specific expression patterns, previously unrecognized stress-induced genes, and many novel genes with root-enriched mRNA expression for improving our understanding of root biology and manipulation of rootstock traits in wine grape. mRNA abundance estimates based on EST library-enriched expression patterns showed only modest correlations between microarray and quantitative, real-time reverse transcription-polymerase chain reaction (qRT-PCR) methods highlighting the need for deep-sequencing expression profiling methods.
Collapse
Affiliation(s)
- Richard L Tillett
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Ali Ergül
- Biotechnology Institute, Ankara University, Merkez Laboratuvari, Rektorluk Binasi Arkasi, 06100 Ankara, Turkey
| | - Rebecca L Albion
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV 89557-0330, USA
| |
Collapse
|
16
|
Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, de los Ángeles Miccono M, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC PLANT BIOLOGY 2011; 11:57. [PMID: 21447172 PMCID: PMC3076230 DOI: 10.1186/1471-2229-11-57] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 03/29/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Stenospermocarpy is a mechanism through which certain genotypes of Vitis vinifera L. such as Sultanina produce berries with seeds reduced in size. Stenospermocarpy has not yet been characterized at the molecular level. RESULTS Genetic and physical maps were integrated with the public genomic sequence of Vitis vinifera L. to improve QTL analysis for seedlessness and berry size in experimental progeny derived from a cross of two seedless genotypes. Major QTLs co-positioning for both traits on chromosome 18 defined a 92-kb confidence interval. Functional information from model species including Vitis suggested that VvAGL11, included in this confidence interval, might be the main positional candidate gene responsible for seed and berry development.Characterization of VvAGL11 at the sequence level in the experimental progeny identified several SNPs and INDELs in both regulatory and coding regions. In association analyses performed over three seasons, these SNPs and INDELs explained up to 78% and 44% of the phenotypic variation in seed and berry weight, respectively. Moreover, genetic experiments indicated that the regulatory region has a larger effect on the phenotype than the coding region. Transcriptional analysis lent additional support to the putative role of VvAGL11's regulatory region, as its expression is abolished in seedless genotypes at key stages of seed development. These results transform VvAGL11 into a functional candidate gene for further analyses based on genetic transformation.For breeding purposes, intragenic markers were tested individually for marker assisted selection, and the best markers were those closest to the transcription start site. CONCLUSION We propose that VvAGL11 is the major functional candidate gene for seedlessness, and we provide experimental evidence suggesting that the seedless phenotype might be caused by variations in its promoter region. Current knowledge of the function of its orthologous genes, its expression profile in Vitis varieties and the strong association between its sequence variation and the degree of seedlessness together indicate that the D-lineage MADS-box gene VvAGL11 corresponds to the Seed Development Inhibitor locus described earlier as a major locus for seedlessness. These results provide new hypotheses for further investigations of the molecular mechanisms involved in seed and berry development.
Collapse
Affiliation(s)
- Nilo Mejía
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | - Braulio Soto
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | - Marcos Guerrero
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | - Ximena Casanueva
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | - Cléa Houel
- UMR INRA CNRS University of Evry on Plant Genomics, 2 rue Gaston Crémieux, BP 5708, 91057, Evry, France
| | | | - Rodrigo Ramos
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | - Loïc Le Cunff
- INRA - Montpellier SupAgro, UMR 1097, Equipe Diversité Génétique et Génomique Vigne, 2 place P. Viala, F-34060 Montpellier Cedex 1, France
| | - Jean-Michel Boursiquot
- INRA - Montpellier SupAgro, UMR 1097, Equipe Diversité Génétique et Génomique Vigne, 2 place P. Viala, F-34060 Montpellier Cedex 1, France
| | - Patricio Hinrichsen
- Biotechnology Unit, La Platina Experimental Station, INIA, Av. Santa Rosa 11610, 8831314, Santiago, Chile
| | | |
Collapse
|
17
|
Martínez-Esteso MJ, Casado-Vela J, Sellés-Marchart S, Elortza F, Pedreño MA, Bru-Martínez R. iTRAQ-based profiling of grape berry exocarp proteins during ripening using a parallel mass spectrometric method. ACTA ACUST UNITED AC 2011; 7:749-65. [DOI: 10.1039/c0mb00194e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Costenaro-da-Silva D, Passaia G, Henriques JAP, Margis R, Pasquali G, Revers LF. Identification and expression analysis of genes associated with the early berry development in the seedless grapevine (Vitis vinifera L.) cultivar Sultanine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:510-9. [PMID: 21802609 DOI: 10.1016/j.plantsci.2010.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 05/13/2023]
Abstract
Sultanine grapevine (Vitis vinifera L.) is one of the most important commercial seedless table-grape varieties and the main source of seedlessness for breeding programs around the world. Despite its commercial relevance, little is known about the genetic control of seedlessness in grapes, remaining unknown the molecular identity of genes responsible for such phenotype. Actually, studies concerning berry development in seedless grapes are scarce at the molecular level. We therefore developed a representational difference analysis (RDA) modified method named Bulk Representational Analysis of Transcripts (BRAT) in the attempt to identify genes specifically associated with each of the main developmental stages of Sultanine grapevine berries. A total of 2400 transcript-derived fragments (TDFs) were identified and cloned by RDA according to three specific developmental berry stages. After sequencing and in silico analysis, 1554 (64.75%) TDFs were validated according to our sequence quality cut-off. The assembly of these expressed sequence tags (ESTs) yielded 504 singletons and 77 clusters, with an overall EST redundancy of approximately 67%. Amongst all stage-specific cDNAs, nine candidate genes were selected and, along with two reference genes, submitted to a deeper analysis of their temporal expression profiles by reverse transcription-quantitative PCR. Seven out of nine genes proved to be in agreement with the stage-specific expression that allowed their isolation by RDA.
Collapse
Affiliation(s)
- Danielle Costenaro-da-Silva
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15.005, CEP 91.501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, Fennell AY. VitisNet: "Omics" integration through grapevine molecular networks. PLoS One 2009; 4:e8365. [PMID: 20027228 PMCID: PMC2791446 DOI: 10.1371/journal.pone.0008365] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/24/2009] [Indexed: 11/25/2022] Open
Abstract
Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - Grant R. Cramer
- Department of Biochemistry, University of Nevada Reno, Reno, Nevada, United States of America
| | - Julie A. Dickerson
- Department of Electrical and Computer Engineering and Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
| | - Kathy Mathiason
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
| | - John Van Hemert
- Department of Electrical and Computer Engineering and Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, United States of America
| | - Anne Y. Fennell
- Horticulture, Forestry, Landscape, and Parks Department, South Dakota State University, Brookings, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
20
|
Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P. Computational annotation of genes differentially expressed along olive fruit development. BMC PLANT BIOLOGY 2009; 9:128. [PMID: 19852839 PMCID: PMC2774695 DOI: 10.1186/1471-2229-9-128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 10/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. RESULTS mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all known KEGG (Kyoto Encyclopaedia of Genes and Genomes) metabolic pathways for characterizing and positioning retrieved EST records. The integration of the olive sequence datasets within the MapMan platform for microarray analysis allowed the identification of specific biosynthetic pathways useful for the definition of key functional categories in time course analyses for gene groups. CONCLUSION The bioinformatic annotation of all gene sequences was useful to shed light on metabolic pathways and transcriptional aspects related to carbohydrates, fatty acids, secondary metabolites, transcription factors and hormones as well as response to biotic and abiotic stresses throughout olive drupe development. These results represent a first step toward both functional genomics and systems biology research for understanding the gene functions and regulatory networks in olive fruit growth and ripening.
Collapse
Affiliation(s)
- Giulio Galla
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Gianni Barcaccia
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Angelo Ramina
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Silvio Collani
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Fiammetta Alagna
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Luciana Baldoni
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Nicolò GM Cultrera
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Federico Martinelli
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Luca Sebastiani
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Pietro Tonutti
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
21
|
Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian EM. A framework map from grapevine V3125 (Vitis vinifera 'Schiava grossa' x 'Riesling') x rootstock cultivar 'Börner' (Vitis riparia x Vitis cinerea) to localize genetic determinants of phylloxera root resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1039-51. [PMID: 19626311 DOI: 10.1007/s00122-009-1107-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 06/30/2009] [Indexed: 05/05/2023]
Abstract
Grapevine rootstock cultivar 'Börner' is a hybrid of Vitis riparia and Vitis cinerea Arnold that shows high resistance to phylloxera (Daktulosphaira vitifoliae Fitch). To localize the determinants of phylloxera root resistance, the susceptible grapevine V3125 (Vitis vinifera 'Schiava grossa' x 'Riesling') was crossed to 'Börner'. Genetic framework maps were built from the progeny. 235 microsatellite markers were placed on the integrated parental map. They cover 1,155.98 cM on 19 linkage groups with an average marker distance of 4.8 cM. Phylloxera resistance was scored by counting nodosities after inoculation of the root system. Progeny plants were triplicated and experimentally infected in 2 years. A scan of the genetic maps indicated a quantitative trait locus on linkage group 13. This region was targeted by six microsatellite-type markers newly developed from the V. vinifera model genome sequence. Two of these appear closely linked to the trait, and can be useful for marker-assisted breeding.
Collapse
Affiliation(s)
- Junke Zhang
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009; 9:2503-28. [PMID: 19343710 DOI: 10.1002/pmic.200800158] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well-watered and water-deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2-D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post-transcriptional processes. About half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue-specific origins and the influence of water-deficit stress on the accumulation of key flavor and aroma compounds in wine.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557-0200, USA
| | | | | | | | | | | |
Collapse
|
23
|
Katoh H, Suzuki S, Saitoh T, Takayanagi T. Cloning and characterization of VIGG, a novel virus-induced grapevine protein, correlated with fruit quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:291-299. [PMID: 19138527 DOI: 10.1016/j.plaphy.2008.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 05/27/2023]
Abstract
We report here the identification and characterization of VIGG, a novel virus-induced grapevine protein. Analysis of VIGG expression in grapevine demonstrated that VIGG was constitutively expressed in leaves and stems in virus-infected grapevine, and that VIGG expression was induced by grapevine virus A (GVA) infection, but not by infection with other viruses. The virus-induced expression profile of VIGG was supported by the finding that virus-free meristem cultures prepared from virus-infected grapevines did not express VIGG. An experiment using GFP-VIGG fusion protein demonstrated that VIGG might be localized in or around the endoplasmic reticulum (ER). Treatment of grapevine cells with ER stress inducers resulted in the induction of VIGG expression. Berries from VIGG-expressing grapevines had higher organic acid and phenolic contents than those from control grapevines that did not express VIGG. Interestingly, fruit composition of a grapevine that was simultaneously infected by GVA and grapevine virus B (GVB), which did not express VIGG, was significantly different from that of GVA-infected grapevines expressing VIGG, suggesting that the effector of fruit composition alteration might be VIGG expression, but not GVA infection. Taken together, VIGG expression might suppress the decrease in organic acid content and increase phenol content in berries. Further investigation of the biological function of VIGG is expected to provide new information on the fruit quality of grapevines.
Collapse
Affiliation(s)
- Hironori Katoh
- Laboratory of Fruit Genetic Engineering, The Institute of Enology and Viticulture, University of Yamanashi, Kofu, Yamanashi 400-0005, Japan
| | | | | | | |
Collapse
|
24
|
Lücker J, Laszczak M, Smith D, Lund ST. Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation. BMC Genomics 2009; 10:50. [PMID: 19171055 PMCID: PMC2637896 DOI: 10.1186/1471-2164-10-50] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 01/26/2009] [Indexed: 11/27/2022] Open
Abstract
Background iTRAQ is a proteomics technique that uses isobaric tags for relative and absolute quantitation of tryptic peptides. In proteomics experiments, the detection and high confidence annotation of proteins and the significance of corresponding expression differences can depend on the quality and the species specificity of the tryptic peptide map database used for analysis of the data. For species for which finished genome sequence data are not available, identification of proteins relies on similarity to proteins from other species using comprehensive peptide map databases such as the MSDB. Results We were interested in characterizing ripening initiation ('veraison') in grape berries at the protein level in order to better define the molecular control of this important process for grape growers and wine makers. We developed a bioinformatic pipeline for processing EST data in order to produce a predicted tryptic peptide database specifically targeted to the wine grape cultivar, Vitis vinifera cv. Cabernet Sauvignon, and lacking truncated N- and C-terminal fragments. By searching iTRAQ MS/MS data generated from berry exocarp and mesocarp samples at ripening initiation, we determined that implementation of the custom database afforded a large improvement in high confidence peptide annotation in comparison to the MSDB. We used iTRAQ MS/MS in conjunction with custom peptide db searches to quantitatively characterize several important pathway components for berry ripening previously described at the transcriptional level and confirmed expression patterns for these at the protein level. Conclusion We determined that a predicted peptide database for MS/MS applications can be derived from EST data using advanced clustering and trimming approaches and successfully implemented for quantitative proteome profiling. Quantitative shotgun proteome profiling holds great promise for characterizing biological processes such as fruit ripening initiation and may be further improved by employing preparative techniques and/or analytical equipment that increase peptide detection sensitivity via a shotgun approach.
Collapse
Affiliation(s)
- Joost Lücker
- Faculty of Land and Food Systems, Wine Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
25
|
Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL, Bulley SM, Chagne D, Marsh KB, Matich AJ, Montefiori M, Newcomb RD, Schaffer RJ, Usadel B, Allan AC, Boldingh HL, Bowen JH, Davy MW, Eckloff R, Ferguson AR, Fraser LG, Gera E, Hellens RP, Janssen BJ, Klages K, Lo KR, MacDiarmid RM, Nain B, McNeilage MA, Rassam M, Richardson AC, Rikkerink EH, Ross GS, Schröder R, Snowden KC, Souleyre EJF, Templeton MD, Walton EF, Wang D, Wang MY, Wang YY, Wood M, Wu R, Yauk YK, Laing WA. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 2008; 9:351. [PMID: 18655731 PMCID: PMC2515324 DOI: 10.1186/1471-2164-9-351] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/27/2008] [Indexed: 11/13/2022] Open
Abstract
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.
Collapse
Affiliation(s)
- Ross N Crowhurst
- The Horticultural and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|