1
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
2
|
Identification and functional characterization of solute carrier family 6 genes in Ciona savignyi. Gene 2019; 705:142-148. [PMID: 31026570 DOI: 10.1016/j.gene.2019.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/12/2022]
Abstract
The solute carrier 6 (SLC6) gene family, functioning as neurotransmitter transporters, plays the crucial roles in neurotransmission, cellular and organismal homeostasis. In this study, we found an expansion of SLC6 family gene in the genome of chordate invertebrate Ciona savignyi. A total of 40 candidate genes including 29 complete and 11 putative genes were identified as SLC6 family gene homologs. Phylogenetic analysis revealed that most of these Ciona SLC6 genes were highly conserved with the vertebrate ones, although gene duplication and gene losses did exist. Four genes were selected from SLC6 subfamilies to be further investigated for their functional characteristics on cell growth and migration through overexpression approach in cultured cell lines. The results showed both SLC6A7 and SLC6A17 from amino acid transporters AA1 and AA2 sub-families, respectively, significantly suppressed the cell proliferation and migration. While SLC6A1 and SLC6A4, which were classified into GABA and monoamine transporters, respectively, did not affect the cell proliferation and migration in HEK293T, HeLa, and MCF7 cells. The whole set of C. savignyi SLC6 genes identified in this study provides an important genomic resource for future biochemical, physiological, and phylogenetic studies on SLC6 gene family. Our experimental data demonstrated that Ciona amino acid transporters, such as SLC6A7 and SLC6A17, were essential for cell physiology and behaviors, indicating their crucially potential roles in the control of cell proliferation and migration during ascidian embryogenesis.
Collapse
|
3
|
van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014; 37:715-33. [PMID: 24789340 DOI: 10.1007/s10545-014-9713-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/drug therapy
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/physiopathology
- Creatine/deficiency
- Creatine/genetics
- Genetic Diseases, X-Linked/genetics
- Humans
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/complications
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/physiopathology
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
4
|
Post-transcriptional regulation of the creatine transporter gene: functional relevance of alternative splicing. Biochim Biophys Acta Gen Subj 2014; 1840:2070-9. [PMID: 24561156 DOI: 10.1016/j.bbagen.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Aberrations in about 10-15% of X-chromosome genes account for intellectual disability (ID); with a prevalence of 1-3% (Gécz et al., 2009 [1]). The SLC6A8 gene, mapped to Xq28, encodes the creatine transporter (CTR1). Mutations in SLC6A8, and the ensuing decrease in brain creatine, lead to co-occurrence of speech/language delay, autism-like behaviors and epilepsy with ID. A splice variant of SLC6A8-SLC6A8C, containing intron 4 and exons 5-13, was identified. Herein, we report the identification of a novel variant - SLC6A8D, and functional relevance of these isoforms. METHODS Via (quantitative) RT-PCR, uptake assays, and confocal microscopy, we investigated their expression and function vis-à-vis creatine transport. RESULTS SLC6A8D is homologous to SLC6A8C except for a deletion of exon 9 (without occurrence of a frame shift). Both contain an open reading frame encoding a truncated protein but otherwise identical to CTR1. Like SLC6A8, both variants are predominantly expressed in tissues with high energy requirement. Our experiments reveal that these truncated isoforms do not transport creatine. However, in SLC6A8 (CTR1)-overexpressing cells, a subsequent infection (transduction) with viral constructs encoding either the SLC6A8C (CTR4) or SLC6A8D (CTR5) isoform resulted in a significant increase in creatine accumulation compared to CTR1 cells re-infected with viral constructs containing the empty vector. Moreover, transient transfection of CTR4 or CTR5 into HEK293 cells resulted in significantly higher creatine uptake. CONCLUSIONS CTR4 and CTR5 are possible regulators of the creatine transporter since their overexpression results in upregulated CTR1 protein and creatine uptake. GENERAL SIGNIFICANCE Provides added insight into the mechanism(s) of creatine transport regulation.
Collapse
|
5
|
Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Aspects Med 2013; 34:197-219. [PMID: 23506866 DOI: 10.1016/j.mam.2012.07.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/03/2012] [Indexed: 02/08/2023]
Abstract
The SLC6 family of secondary active transporters are integral membrane solute carrier proteins characterized by the Na(+)-dependent translocation of small amino acid or amino acid-like substrates. SLC6 transporters, which include the serotonin, dopamine, norepinephrine, GABA, taurine, creatine, as well as amino acid transporters, are associated with a number of human diseases and disorders making this family a critical target for therapeutic development. In addition, several members of this family are directly involved in the action of drugs of abuse such as cocaine, amphetamines, and ecstasy. Recent advances providing structural insight into this family have vastly accelerated our ability to study these proteins and their involvement in complex biological processes.
Collapse
Affiliation(s)
- Akula Bala Pramod
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, United States
| | | | | | | |
Collapse
|
6
|
Abstract
A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (≈ 0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD.
Collapse
|
7
|
Skelton MR, Schaefer TL, Graham DL, Degrauw TJ, Clark JF, Williams MT, Vorhees CV. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS One 2011; 6:e16187. [PMID: 21249153 PMCID: PMC3020968 DOI: 10.1371/journal.pone.0016187] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022] Open
Abstract
Mutations in the creatine (Cr) transporter (CrT; Slc6a8) gene lead to absence of brain Cr and intellectual disabilities, loss of speech, and behavioral abnormalities. To date, no mouse model of CrT deficiency exists in which to understand and develop treatments for this condition. The purpose of this study was to generate a mouse model of human CrT deficiency. We created mice with exons 2–4 of Slc6a8 flanked by loxP sites and crossed these to Cre:CMV mice to create a line of ubiquitous CrT knockout expressing mice. Mice were tested for learning and memory deficits and assayed for Cr and neurotransmitter levels. Male CrT−/y (affected) mice lack Cr in the brain and muscle with significant reductions of Cr in other tissues including heart and testes. CrT−/y mice showed increased path length during acquisition and reversal learning in the Morris water maze. During probe trials, CrT−/y mice showed increased average distance from the platform site. CrT−/y mice showed reduced novel object recognition and conditioned fear memory compared to CrT+/y. CrT−/y mice had increased serotonin and 5-hydroxyindole acetic acid in the hippocampus and prefrontal cortex. Ubiquitous CrT knockout mice have learning and memory deficits resembling human CrT deficiency and this model should be useful in understanding this disorder.
Collapse
Affiliation(s)
- Matthew R Skelton
- Division of Neurology, Cincinnati Children's Research Foundation, and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | |
Collapse
|
8
|
Ardon O, Filippo CADS, Salomons GS, Longo N. Creatine transporter deficiency in two half-brothers. Am J Med Genet A 2010; 152A:1979-83. [DOI: 10.1002/ajmg.a.33551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Matkovich SJ, Zhang Y, Van Booven DJ, Dorn GW. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq. Circ Res 2010; 106:1459-67. [PMID: 20360248 PMCID: PMC2891025 DOI: 10.1161/circresaha.110.217513] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RATIONALE Transcriptional profiling can detect subclinical heart disease and provide insight into disease etiology and functional status. Current microarray-based methods are expensive and subject to artifact. OBJECTIVE To develop RNA sequencing methodologies using next generation massively parallel platforms for high throughput comprehensive analysis of individual mouse cardiac transcriptomes. To compare the results of sequencing- and array-based transcriptional profiling in the well-characterized Galphaq transgenic mouse hypertrophy/cardiomyopathy model. METHODS AND RESULTS The techniques for preparation of individually bar-coded mouse heart RNA libraries for Illumina Genome Analyzer II resequencing are described. RNA sequencing showed that 234 high-abundance transcripts (>60 copies/cell) comprised 55% of total cardiac mRNA. Parallel transcriptional profiling of Galphaq transgenic and nontransgenic hearts by Illumina RNA sequencing and Affymetrix Mouse Gene 1.0 ST arrays revealed superior dynamic range for mRNA expression and enhanced specificity for reporting low-abundance transcripts by RNA sequencing. Differential mRNA expression in Galphaq and nontransgenic hearts correlated well between microarrays and RNA sequencing for highly abundant transcripts. RNA sequencing was superior to arrays for accurately quantifying lower-abundance genes, which represented the majority of the regulated genes in the Galphaq transgenic model. CONCLUSIONS RNA sequencing is rapid, accurate, and sensitive for identifying both abundant and rare cardiac transcripts, and has significant advantages in time- and cost-efficiencies over microarray analysis.
Collapse
Affiliation(s)
- Scot J Matkovich
- Department of Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St Louis, Mo 63110, USA
| | | | | | | |
Collapse
|
10
|
Nasrallah F, Feki M, Kaabachi N. Creatine and creatine deficiency syndromes: biochemical and clinical aspects. Pediatr Neurol 2010; 42:163-71. [PMID: 20159424 DOI: 10.1016/j.pediatrneurol.2009.07.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/10/2009] [Accepted: 07/30/2009] [Indexed: 11/28/2022]
Abstract
Creatine deficiency syndromes, which have only recently been described, represent a group of inborn errors of creatine synthesis (L-arginine-glycine amidinotransferase deficiency and guanidinoacetate methyltransferase deficiency) and transport (creatine transporter deficiency). Patients with creatine deficiency syndromes present with mental retardation expressive speech and language delay, and epilepsy. Patients with guanidinoacetate methyltransferase deficiency or creatine transporter deficiency may exhibit autistic behavior. The common denominator of these disorders is the depletion of the brain creatine pool, as demonstrated by in vivo proton magnetic resonance spectroscopy. For diagnosis, laboratory investigations start with analysis of guanidinoacetate, creatine, and creatinine in plasma and urine. Based on these findings, enzyme assays or DNA mutation analysis may be performed. The creatine deficiency syndromes are underdiagnosed, so the possibility should be considered in all children affected by unexplained mental retardation, seizures, and speech delay. Guanidinoacetate methyltransferase deficiency and arginine-glycine amidinotransferase deficiency are treatable by oral creatine supplementation, but patients with creatine transporter deficiency do not respond to this type of treatment.
Collapse
|