1
|
Matthee C, Brown AR, Lange A, Tyler CR. Factors Determining the Susceptibility of Fish to Effects of Human Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8845-8862. [PMID: 37288931 PMCID: PMC10286317 DOI: 10.1021/acs.est.2c09576] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The increasing levels and frequencies at which active pharmaceutical ingredients (APIs) are being detected in the environment are of significant concern, especially considering the potential adverse effects they may have on nontarget species such as fish. With many pharmaceuticals lacking environmental risk assessments, there is a need to better define and understand the potential risks that APIs and their biotransformation products pose to fish, while still minimizing the use of experimental animals. There are both extrinsic (environment- and drug-related) and intrinsic (fish-related) factors that make fish potentially vulnerable to the effects of human drugs, but which are not necessarily captured in nonfish tests. This critical review explores these factors, particularly focusing on the distinctive physiological processes in fish that underlie drug absorption, distribution, metabolism, excretion and toxicity (ADMET). Focal points include the impact of fish life stage and species on drug absorption (A) via multiple routes; the potential implications of fish's unique blood pH and plasma composition on the distribution (D) of drug molecules throughout the body; how fish's endothermic nature and the varied expression and activity of drug-metabolizing enzymes in their tissues may affect drug metabolism (M); and how their distinctive physiologies may impact the relative contribution of different excretory organs to the excretion (E) of APIs and metabolites. These discussions give insight into where existing data on drug properties, pharmacokinetics and pharmacodynamics from mammalian and clinical studies may or may not help to inform on environmental risks of APIs in fish.
Collapse
Affiliation(s)
- Chrisna Matthee
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Andrew Ross Brown
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Anke Lange
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R. Tyler
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| |
Collapse
|
2
|
Araújo FG, Morado CN, Parente TTE, Paumgartten FJR, Gomes ID. Biomarkers and bioindicators of the environmental condition using a fish species (Pimelodus maculatus Lacepède, 1803) in a tropical reservoir in Southeastern Brazil. BRAZ J BIOL 2017; 78:351-359. [DOI: 10.1590/1519-6984.167209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/19/2016] [Indexed: 11/22/2022] Open
Abstract
Abstract The Funil Reservoir receives a large amount of xenobiotics from the Paraíba do Sul River (PSR) from large number of industries and municipalities in the watershed. This study aimed to assess environmental quality along the longitudinal profile of the Paraíba do Sul River–Funil Reservoir system, by using biomarkers and bioindicators in a selected fish species. The raised hypothesis is that Funil Reservoir acts as a filter for the xenobiotics of the PSR waters, improving river water quality downstream the dam. Two biomarkers, the ethoxyresorufin–O–deethylase activity (EROD), measured as fluorimetricly in S9 hepatic fraction, and the micronuclei frequency (MN), observed in erythrocytes of the cytoplasm, and three bioindicators, the hepatosomatic index (HSI), gonadosomatic index (GSI) and condition factor (CF) were used in Pimelodus maculatus, a fish species widely distributed in the system. Four zones were searched through a longitudinal gradient: 1, river upstream from the reservoir; 2, upper reservoir; 3, lower reservoir; 4, river downstream of the reservoir. EROD activity and HSI and GSI had significant differences among the zones (P<0.05). The upper reservoir had the lowest EROD activity and HSI, whereas the river downstream of the reservoir had the highest EROD and lowest GSI. The river upstream from the reservoir showed the highest HSI and GSI. It is suggested that the lowest environmental condition occur at the river downstream of the reservoir, where it seems to occur more influence of xenobiotics, which could be associated with hydroelectric plant operation. The hypothesis that Funil reservoir acts as a filter decanting pollution from the Paraíba do Sul River waters was rejected. These results are novel information on this subject for a native fish species and could be useful for future comparisons with other environments.
Collapse
Affiliation(s)
- F. G. Araújo
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | - C. N. Morado
- Universidade Federal Rural do Rio de Janeiro, Brazil
| | | | | | - I. D. Gomes
- Universidade Federal Rural do Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Parente TE, Moreira DA, Magalhães MGP, de Andrade PCC, Furtado C, Haas BJ, Stegeman JJ, Hahn ME. The liver transcriptome of suckermouth armoured catfish (Pterygoplichthys anisitsi, Loricariidae): Identification of expansions in defensome gene families. MARINE POLLUTION BULLETIN 2017; 115:352-361. [PMID: 28062095 PMCID: PMC5310677 DOI: 10.1016/j.marpolbul.2016.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 06/02/2023]
Abstract
Pterygoplichthys is a genus of related suckermouth armoured catfishes native to South America, which have invaded tropical and subtropical regions worldwide. Physiological features, including an augmented resistance to organic xenobiotics, may have aided their settlement in foreign habitats. The liver transcriptome of Pterygoplichthys anisitsi was sequenced and used to characterize the diversity of mRNAs potentially involved in the responses to natural and anthropogenic chemicals. In total, 66,642 transcripts were assembled. Among the identified defensome genes, cytochromes P450 (CYP) were the most abundant, followed by sulfotransferases (SULT), nuclear receptors (NR) and ATP binding cassette transporters (ABC). A novel expansion in the CYP2Y subfamily was identified, as well as an independent expansion of the CYP2AAs. Two expansions were also observed among SULT1. Thirty-two transcripts were classified into twelve subfamilies of NR, while 21 encoded ABC transporters. The diversity of defensome transcripts sequenced herein could contribute to this species' resistance to organic xenobiotics.
Collapse
Affiliation(s)
- Thiago E Parente
- Laboratório de Toxicologia Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brasil; Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brasil; Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA.
| | - Daniel A Moreira
- Laboratório de Toxicologia Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brasil
| | - Maithê G P Magalhães
- Laboratório de Toxicologia Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brasil
| | - Paula C C de Andrade
- Laboratório de Toxicologia Ambiental, Escola Nacional de Saúde Pública (ENSP), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brasil
| | - Carolina Furtado
- Unidade de Genômica, Instituto Nacional do Cancer (INCA), Rio de Janeiro 20230-130, Brasil
| | - Brian J Haas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - John J Stegeman
- Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA
| | - Mark E Hahn
- Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA
| |
Collapse
|
4
|
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent anthropogenic contaminants that can accumulate in tissues of fish. The toxicity of PCBs and their transformation products has been investigated for nearly 50 years, but there is a lack of consensus regarding the effects of these environmental contaminants on wild fish populations. The objective of this review is to critically examine these investigations and evaluate publicly available databases for evidence of effects of PCBs in wild fish. Biological activity of PCBs is limited to a small proportion of PCB congeners [e.g., dioxin-like PCBs (DL-PCBs)] and occurs at concentrations that are typically orders of magnitude higher than PCB levels detected in wild fish. Induction of biomarkers consistent with PCB exposure (e.g., induction of cytochrome P450 monooxygenase system) has been evaluated frequently and shown to be induced in fish from some environments, but there does not appear to be consistent reports of damage (i.e., biomarkers of effect) to biomolecules (i.e., oxidative injury) in these fish. Numerous investigations of endocrine system dysfunction or effects on other organ systems have been conducted in wild fish, but collectively there is no consistent evidence of PCB effects on these systems in wild fish. Early life stage toxicity of DL-PCBs does not appear to occur at concentrations reported in wild fish embryos, and results do not support an association between PCBs and decreased survival of early life stages of wild fish. Overall, there appears to be little evidence that PCBs have had any widespread effect on the health or survival of wild fish.
Collapse
Affiliation(s)
- T B Henry
- a School of Life Sciences, John Muir Building, Heriot-Watt University , Edinburgh, EH14 4AS , UK.,b The University of Tennessee Center for Environmental Biotechnology , 676 Dabney Hall, Knoxville , Tennessee 37996, USA.,c Department of Forestry , Wildlife and Fisheries, The University of Tennessee , 274 Ellington Plant Sciences Building, Knoxville , Tennessee , 37996, USA
| |
Collapse
|
5
|
Arantes Felício A, Martins Parente TE, Regina Maschio L, Nogueira L, Rodrigues Venancio LP, de Freitas Rebelo M, Schlenk D, de Almeida EA. Biochemical responses, morphometric changes, genotoxic effects and CYP1A expression in the armored catfish Pterygoplichthys anisitsi after 15 days of exposure to mineral diesel and biodiesel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 115:26-32. [PMID: 25666734 DOI: 10.1016/j.ecoenv.2015.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 01/26/2015] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Despite being considered friendlier to the environment, biodiesel fuel can be harmful to aquatic organisms, especially when combined with petroleum diesel fuel. In this work we evaluated the effects of mineral diesel fuel containing increasing concentrations of biodiesel (5% and 20%, namely B5 and B20) and pure biodiesel (B100), at concentrations of 0.001 and 0.01mLL(-1), after 15 days of exposure, in armored catfish (Pterygoplichtys anisitsi). Toxicity tests were also performed to estimate LC50 values (96h) for each compound. Biotransformation enzymes [ethoxyresorufin-O-deethylase (EROD), and glutathione S-transferase (GST)] as well as oxidative stress markers (superoxide dismutase, SOD, catalase, CAT, glutathione peroxidase, GPx, and the level of lipid peroxidation) were measured in liver and gills after treatment. Genotoxic effects were also accessed in erythrocytes using the comet assay and by evaluating the frequency of micronuclei formation. Further, the mRNA of cytochrome P450 1A (CYP1A) was also measured in liver. Mortality was not observed even exposure to concentrations as high as 6.0mLL(-1). EROD and GST activities were increased after B5 and B20 treatments; however, CYP1A mRNA induction was not observed. SOD and CAT activities were decreased, but GPx was significantly higher for all treatments in gills. There were no significant changes in lipid peroxidation, but genotoxicity markers revealed that all treatments increased comet scores. Fuels B5 and B20 increased micronuclei frequency. Our results indicate that despite being less toxic, biodiesel may cause sublethal alterations in fish that may alter long term health.
Collapse
Affiliation(s)
- Andréia Arantes Felício
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, São José do Rio Preto, SP, Brasil
| | - Thiago Estevam Martins Parente
- Laboratório de Biologia Molecular Ambiental-BioMA, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro-UFRJ, Brazil
| | - Lucilene Regina Maschio
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, São José do Rio Preto, SP, Brasil
| | - Lílian Nogueira
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, São José do Rio Preto, SP, Brasil
| | - Larissa Paola Rodrigues Venancio
- Centro de Estudo de Quelônios (CEQ) e Laboratório de Hemoglobinas de Genética das Doenças Hematológicas (LHGDH), IBILCE, UNESP, São José do Rio Preto, SP, Brasil
| | - Mauro de Freitas Rebelo
- Laboratório de Biologia Molecular Ambiental-BioMA, Instituto de Biofísica Carlos Chagas Filho-IBCCF, Universidade Federal do Rio de Janeiro-UFRJ, Brazil
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, 3401Watkins Dr, Riverside, CA 92521, USA
| | - Eduardo Alves de Almeida
- Departamento de Química e Ciências Ambientais, IBILCE, UNESP, São José do Rio Preto, SP, Brasil.
| |
Collapse
|
6
|
Parente TEM, Urban P, Pompon D, Rebelo MF. Altered substrate specificity of the Pterygoplichthys sp. (Loricariidae) CYP1A enzyme. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:193-199. [PMID: 24911589 DOI: 10.1016/j.aquatox.2014.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Ethoxyresorufin is a classical substrate for vertebrate CYP1A enzymes. In Pterygoplichthys sp. (Loricariidae) this enzyme possesses 48 amino acids substitutions compared to CYP1A sequences from other vertebrate species. These substitutions or a certain subset substitution are responsible for the non-detection of the EROD reaction in this species liver microsomes. In the present study, we investigated the catalytic activity of Pterygoplichthys sp. CYP1A toward 15 potential substrates in order to understand the substrate preferences of this modified CYP1A. The fish gene was expressed in yeast and the accumulation of the protein was confirmed by both the characteristic P450-CO absorbance spectra and by detection with monoclonal antibodies. Catalytic activities were assayed with yeast microsomes and four resorufin ethers, six coumarin derivates, three flavones, resveratrol and ethoxyfluoresceinethylester. Results demonstrated that the initial velocity pattern of this enzyme for the resorufin derivatives is different from the one described for most vertebrate CYP1As. The initial velocity for the activity with the coumarin derivatives is several orders of magnitude higher than with the resorufins, i.e. the turnover number (kcat) for ECOD is 400× higher than for EROD. Nonetheless, the specificity constant (kcat/km) for EROD is only slightly higher than for ECOD. EFEE is degraded at a rate comparable to the resorufins. Pterygoplichthys sp. CYP1A also degrades 7-methoxyflavone and β-naphthoflavone but not resveratrol and chrysin. These results indicate a divergent substrate preference for Pterygoplichthys sp. CYP1A, which may be involved in the adaptation of Loricariidae fish to their particular environment and feeding habits.
Collapse
Affiliation(s)
- Thiago E M Parente
- BioMA, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brasil.
| | - Philippe Urban
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, 135 Avenue de Rangueil, F-31400 Toulouse, France
| | - Denis Pompon
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Mauro F Rebelo
- BioMA, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brasil
| |
Collapse
|
7
|
Yang J, An J, Li M, Hou X, Qiu X. Characterization of chicken cytochrome P450 1A4 and 1A5: inter-paralog comparisons of substrate preference and inhibitor selectivity. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:337-43. [PMID: 23474502 DOI: 10.1016/j.cbpc.2013.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/17/2022]
Abstract
The chicken (Gallus gallus) is one of the most economically important domestic animals and also an avian model species. Chickens have two CYP1A genes (CYP1A4 and CYP1A5) which are orthologous to mammalian CYP1A1 and CYP1A2. Although the importance of chicken CYP1As in metabolism of endogenous compounds and xenobiotics is well recognized, their enzymatic properties, substrate preference and inhibitor selectivity remain poorly understood. In this study, functional enzymes of chicken CYP1A4 and CYP1A5 were successfully produced in Escherichia coli (E. coli). The substrate preference and inhibitor specificity of the two chicken CYP1As were compared. Kinetic results showed that the enzymatic parameters (K(m), V(max), V(max)/K(m)) for ethoxyresorufin O-deethylase (EROD) and benzyloxyresorufin O-debenzylase (BROD) differed between CYP1A4 and CYP1A5, while no significant difference was observed for methoxyresorufin O-demethylase (MROD). Lower K(m) of CYP1A4 for BROD suggests that CYP1A4 has a greater binding affinity to benzyloxyresorufin than either ethoxyresorufin or methoxyresorufin. The highest V(max)/K(m) ratio was seen in BROD activity for CYP1A4 and in MROD for CYP1A5 respectively. These results indicate that substrate preference of chicken CYP1As is more notably distinguished by BROD activity and CYP1A5 prefers shorter alkoxyresorufins resembling its mammalian ortholog CYP1A2. Differential patterns of MROD inhibition were observed between CYP1As and among the five CYP inhibitors (α-naphthoflavone, furafylline, piperonyl butoxide, erythromycin and ketoconazole). α-Naphthoflavone was determined to be a potent MROD inhibitor of both CYP1A4 and CYP1A5. In contrast, no or only a trace inhibitory effect (<15%) was observed by erythromycin at a concentration of 500 μM. Stronger inhibition of MROD activity was found in CYP1A5 than CYP1A4 by relatively small molecules α-naphthoflavone, piperonyl butoxide and furafylline. AROD kinetics and inhibition profiles between chicken CYP1A4 and CYP1A5 demonstrate that the two paralogous members of the CYP1A subfamily have distinct enzymatic properties, reflecting differences in the active site geometry between CYP1A4 and CYP1A5. These findings suggest that CYP1A4 and CYP1A5 play partially overlapping but distinctly different physiological and toxicological roles in the chicken.
Collapse
Affiliation(s)
- Jiannan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|