1
|
Ezoe A, Seki M. Exploring the complexity of genome size reduction in angiosperms. PLANT MOLECULAR BIOLOGY 2024; 114:121. [PMID: 39485504 PMCID: PMC11530473 DOI: 10.1007/s11103-024-01518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Collapse
Affiliation(s)
- Akihiro Ezoe
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan.
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Khan A, Nasim N, Pudhuvai B, Koul B, Upadhyay SK, Sethi L, Dey N. Plant Synthetic Promoters: Advancement and Prospective. AGRICULTURE 2023; 13:298. [DOI: 10.3390/agriculture13020298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Native/endogenous promoters have several fundamental limitations in terms of their size, Cis-elements distribution/patterning, and mode of induction, which is ultimately reflected in their insufficient transcriptional activity. Several customized synthetic promoters were designed and tested in plants during the past decade to circumvent such constraints. Such synthetic promoters have a built-in capacity to drive the expression of the foreign genes at their maximum amplitude in plant orthologous systems. The basic structure and function of the promoter has been discussed in this review, with emphasis on the role of the Cis-element in regulating gene expression. In addition to this, the necessity of synthetic promoters in the arena of plant biology has been highlighted. This review also provides explicit information on the two major approaches for developing plant-based synthetic promoters: the conventional approach (by utilizing the basic knowledge of promoter structure and Cis-trans interaction) and the advancement in gene editing technology. The success of plant genetic manipulation relies on the promoter efficiency and the expression level of the transgene. Therefore, advancements in the field of synthetic promoters has enormous potential in genetic engineering-mediated crop improvement.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 370 05 České Budějovice, Czech Republic
| | - Noohi Nasim
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, Punjab, India
| | | | - Lini Sethi
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar 751023, Odisha, India
| |
Collapse
|
3
|
Arnaiz A, Martinez M, Gonzalez-Melendi P, Grbic V, Diaz I, Santamaria ME. Plant Defenses Against Pests Driven by a Bidirectional Promoter. FRONTIERS IN PLANT SCIENCE 2019; 10:930. [PMID: 31379907 PMCID: PMC6652247 DOI: 10.3389/fpls.2019.00930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/02/2019] [Indexed: 05/06/2023]
Abstract
The plant defense responses to pests results in the synchronized change of a complex network of interconnected genes and signaling pathways. An essential part of this process is mediated by the binding of transcription factors to the specific responsive cis-elements within in the promoters of phytophagous-responsive genes. In this work, it is reported the identification and characterization of a bidirectional promoter that simultaneously co-regulate two divergent genes, At5g10300 and At5g10290, upon arthropod feeding. Computational analysis identified the presence of cis-elements within the intergenic region between two loci, mainly from the DOF but also from the AP2/ERF, Golden 2-like and bHLH families. The function of the bidirectional promoter was analyzed using two enhanced variants of the GFP and CherryFP reporter genes, in both orientations, in transient tobacco and stably transformed Arabidopsis plants. Promoter activity was tested in response to feeding of Tetranychus urticae and Pieris brassicae, as well as wounding, flagellin and chitin treatments. Using RT-qPCR assays and confocal microscopy, it was shown that all treatments resulted in the induction of both reporter genes. Furthermore, our findings revealed the asymmetric character of the promoter with stronger activity in the forward than in the reverse orientation. This study provides an example of a bidirectional promoter with a strong potential to be used in plant biotechnology in pest control that requires stacking of the defense genes.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- *Correspondence: M. Estrella Santamaria,
| |
Collapse
|
4
|
Wang L, Rinaldi FC, Singh P, Doyle EL, Dubrow ZE, Tran TT, Pérez-Quintero AL, Szurek B, Bogdanove AJ. TAL Effectors Drive Transcription Bidirectionally in Plants. MOLECULAR PLANT 2017; 10:285-296. [PMID: 27965000 DOI: 10.1016/j.molp.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 06/06/2023]
Abstract
TAL effectors delivered by phytopathogenic Xanthomonas species are DNA-sequence-specific transcriptional activators of host susceptibility genes and sometimes resistance genes. The modularity of DNA recognition by TAL effectors makes them important also as tools for gene targeting and genome editing. Effector binding elements (EBEs) recognized by native TAL effectors in plants have been identified only on the forward strand of target promoters. Here, we demonstrate that TAL effectors can drive plant transcription from EBEs on either strand and in both directions. Furthermore, we show that a native TAL effector from Xanthomonas oryzae pv. oryzicola drives expression of a target with an EBE on each strand of its promoter. By inserting that promoter and derivatives between two reporter genes oriented head to head, we show that the TAL effector drives expression from either EBE in the respective orientations, and that activity at the reverse-strand EBE also potentiates forward transcription driven by activity at the forward-strand EBE. Our results reveal new modes of action for TAL effectors, suggesting the possibility of yet unrecognized targets important in plant disease, expanding the search space for off-targets of custom TAL effectors, and highlighting the potential of TAL effectors for probing fundamental aspects of plant transcription.
Collapse
Affiliation(s)
- Li Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Fabio C Rinaldi
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Pallavi Singh
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Erin L Doyle
- Department of Biology, Doane University, 1014 Boswell Avenue, Crete, NE 68333, USA
| | - Zoe E Dubrow
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA
| | - Tuan Tu Tran
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Alvaro L Pérez-Quintero
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Boris Szurek
- UMR Interactions-Plantes-Microorganismes-Environnement, IRD-Cirad-Université Montpellier, Montpellier, France
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Fang Y, Wang L, Wang X, You Q, Pan X, Xiao J, Wang XE, Wu Y, Su Z, Zhang W. Histone modifications facilitate the coexpression of bidirectional promoters in rice. BMC Genomics 2016; 17:768. [PMID: 27716056 PMCID: PMC5045660 DOI: 10.1186/s12864-016-3125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Background Bidirectional gene pairs are highly abundant and mostly co-regulated in eukaryotic genomes. The structural features of bidirectional promoters (BDPs) have been well studied in yeast, humans and plants. However, the underlying mechanisms responsible for the coexpression of BDPs remain understudied, especially in plants. Results Here, we characterized chromatin features associated with rice BDPs. Several unique chromatin features were present in rice BDPs but were missing from unidirectional promoters (UDPs), including overrepresented active histone marks, canonical nucleosomes and underrepresented H3K27me3. In particular, overrepresented active marks (H3K4ac, H4K12ac, H4K16ac, H3K4me2 and H3K36me3) were truly overrepresented in type I BDPs but not in the other two BDPs, based on a Kolmogorov-Smirnov test. Conclusions Our analyses indicate that active marks (H3K4ac, H4K12ac, H4K16ac, H3K4me3, H3K9ac and H3K27ac) may coordinate with repressive marks (H3K27me3 and H3K9me1/3) to build a unique chromatin structure that favors the coregulation of bidirectional gene pairs. Thus, our findings help to enhance the understanding of unique epigenetic mechanisms that regulate bidirectional gene pairs and may improve the manipulation of gene pairs for crop bioengineering. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3125-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Lei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ximeng Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, CBS, China Agricultural University, Beijing, 100193, China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Jin Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, CBS, China Agricultural University, Beijing, 100193, China.
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China. .,JiangSu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
6
|
Functional characterization of open chromatin in bidirectional promoters of rice. Sci Rep 2016; 6:32088. [PMID: 27558448 PMCID: PMC4997330 DOI: 10.1038/srep32088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Bidirectional gene pairs tend to be highly coregulated and function in similar biological processes in eukaryotic genomes. Structural features and functional consequences of bidirectional promoters (BDPs) have received considerable attention among diverse species. However, the underlying mechanisms responsible for the bidirectional transcription and coexpression of BDPs remain poorly understood in plants. In this study, we integrated DNase-seq, RNA-seq, ChIP-seq and MNase-seq data and investigated the effect of physical DNase I hypersensitive site (DHS) positions on the transcription of rice BDPs. We found that the physical position of a DHS relative to the TSS of bidirectional gene pairs can affect the expression of the corresponding genes: the closer a DHS is to the TSS, the higher is the expression level of the genes. Most importantly, we observed that the distribution of DHSs plays a significant role in the regulation of transcription and the coexpression of gene pairs, which are possibly mediated by orchestrating the positioning of histone marks and canonical nucleosomes around BDPs. Our results demonstrate that the combined actions of chromatin structures with DHSs, which contain functional cis-elements for interaction with transcriptional machinery, may play an important role in the regulation of the bidirectional transcription or coexpression in rice BDPs. Our findings may help to enhance the understanding of DHSs in the regulation of bidirectional gene pairs.
Collapse
|
7
|
Wang R, Yan Y, Zhu M, Yang M, Zhou F, Chen H, Lin Y. Isolation and Functional Characterization of Bidirectional Promoters in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:766. [PMID: 27303432 PMCID: PMC4885881 DOI: 10.3389/fpls.2016.00766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Bidirectional promoters, which show great application potential in genetic improvement of plants, have aroused great research interest recently. However, most bidirectional promoters were cloned individually in the studies of single genes. Here, we initiatively combined RNA-seq data and cDNA microarray data to discover the potential bidirectional promoters in rice genome. Based on the expression level and correlation of each adjacent and oppositely transcribed gene pair, we selected four candidate gene pairs. Then, the intergenic region between each pair was isolated and cloned into a dual reporter vector pDX2181 for functional identification. GUS and GFP assays of the transgenic plants indicated that all the intergenic regions showed bidirectional expression activity in various tissues. Through 5' and 3' deletion analysis on one of the above bidirectional promoters, we identified the enhancing region which sharply increased its bidirectional expression efficiency and the essential regions respectively responsible for its 5' and 3' basic expression activity. The bidirectional arrangement of the four gene pairs in six gramineous plants was also analyzed, showing the conserved characteristics of the four bidirectional promoters identified in our study. In addition, two novel cis-sequences conserved in the four bidirectional promoters were discovered by bioinformatic identification. Our study proposes a feasible method for selecting, cloning, and functionally identifying bidirectional promoters as well as for discovering their bidirectional regulatory regions and conserved sequences in rice.
Collapse
Affiliation(s)
- Rui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Yan Yan
- Chinese Academy of Tropical Agricultural SciencesHainan, China
| | - Menglin Zhu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Yongjun Lin
| |
Collapse
|
8
|
Dhadi SR, Xu Z, Shaik R, Driscoll K, Ramakrishna W. Differential regulation of genes by retrotransposons in rice promoters. PLANT MOLECULAR BIOLOGY 2015; 87:603-13. [PMID: 25697955 DOI: 10.1007/s11103-015-0300-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | | | | | | | | |
Collapse
|