1
|
Wu XF, Liu Y, Zhan JS, Huang QL, Li WY. A novel splice variant of goat CPT1a gene and their diverse mRNA expression profiles. Anim Biotechnol 2023; 34:2571-2581. [PMID: 36047452 DOI: 10.1080/10495398.2022.2106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The Alternative splicing (AS) of Carnitine palmitoyltransferase 1a (CPT1a) and their expression profiles had never been illuminated in goats until now. Herein, a novel splice transcript in the CPT1a gene that is predicted to result in the skipping of exons 6-19 (CPT1a-sv1) has been isolated in addition to the full-length transcript in goats. The result of RT-PCR showed that CPT1a-sv1 is 606 bp in length and consists of 6 exons. A novel exon 6 was consisted of partial exon 5 and partial exon 19, compared to that in CPT1a. RT-qPCR analysis showed that the expression patterns of CPT1a and CPT1a-sv1 are spatially different. In both kid and adult goats, the CPT1a transcript is strongly expressed in the liver, spleen, lung, kidney, and brain tissues. However, CPT1a-sv1 has a strong tissue-specific expression pattern, with moderate RNA levels in the liver and brain of kids, while highly expressed in the liver and minimally expressed in the brain of adults. We observed two transcripts to be involved in brain development. These findings improve our understanding of the function of the CPT1a gene in goats and provide information on the molecular mechanism of AS events.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Yuan Liu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jin-Shun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi, China
| | - Qin-Lou Huang
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Wen-Yang Li
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Zhou F, Teng X, Wang P, Zhang Y, Miao Y. Isolation, identification, expression and subcellular localization of PPARG gene in buffalo mammary gland. Gene 2020; 759:144981. [PMID: 32707300 DOI: 10.1016/j.gene.2020.144981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 11/15/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG), as a member of the nuclear receptor superfamily, plays an important role in adipocyte differentiation and regulation of lipid and glucose metabolism. In this study, the transcripts of PPARG gene were isolated and identified in buffalo mammary gland. The results showed that two types of transcripts (PPARG1 and PPARG2) of PPARG gene produced by alternative 5' end use were expressed in buffalo mammary gland, and each of them had four different alternative splicing variants. The PPARG1 includes PPARG1a, PPARG1b, PPARG1c and PPARG1d, while the PPARG2 contains PPARG2a, PPARG2b, PPARG2c and PPARG2d. Among them, only PPARG1a, PPARG2a and PPARG2d can encode complete functional proteins with three complete functional domains, and the rest encode truncated proteins with incomplete functional domains. All the eight variants of PPARG protein do not contain transmembrane regions and signal peptides, but their conserved domain, secondary and tertiary structure and subcellular localization were different. Subcellular localization confirmed that the main transcripts PPARG1a and PPARG2a played a functional role in the nucleus, which was consistent with the results by in silico prediction. RT-qPCR analysis of buffalo mammary tissue showed that the mRNA expression levels of PPARG1 and PPARG2 in lactation were higher than those in non-lactation, and the expression levels of transcripts PPARG2d and PPARG1b + PPARG2b in lactating stage were also higher than those in non-lactating stage, but the mRNA abundance of transcripts PPARG1c, PPARG1d and PPARG2c in non-lactating period was higher than that in lactating period. The results of this study suggest that PPARG1 and PPARG2 may play important role in buffalo milk fat synthesis, and the eight alternative splicing variants found here are likely to be related to the post-transcriptional regulation of lactation.
Collapse
Affiliation(s)
- Fangting Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaohong Teng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pei Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongyun Zhang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China; Teaching Demonstration Center of the Basic Experiments of Agricultural Majors, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yongwang Miao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
He L, Kang Z, Kang Y, Xiang W, Pan C, Chen H, Zhu H, Qu L, Lan X, Song X. Goat CMTM2: mRNA expression profiles of different alternative spliced variants and associations analyses with growth traits. 3 Biotech 2020; 10:131. [PMID: 32154044 DOI: 10.1007/s13205-020-2125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/05/2020] [Indexed: 10/24/2022] Open
Abstract
CKLF like MARVEL transmembrane domain containing 2 (CMTM2) plays crucial roles in spermiogenesis, skeletogenous, growth, and development through PI3K/Akt and other pathways. The purpose of this study was to explore the expression profile and variation of different spliced CMTM2 gene in Shaanbei white cashmere goats, as well as to find the relationships between a CMTM2 promoter region 14 bp genetic variant and growth traits in 1366 Shaanbei white cashmere goats. In this study, we identified alternative CMTM2 splicing and detected the effects of the spliced variants on mRNA expression levels in tissues. Meanwhile, an unreported spliced variant of CMTM2 in goat was identified using in CDS cloning and RT-PCR, namely, CMTM2-AS2. Compared with the normal transcript (CMTM2-AS1), the novel variant had the higher expression level in muscle and liver tissues, indicating that it plays an effective role in growth traits. Furthermore, a 14 bp deletion was detected within CMTM2 promoter region, and the different genotypes were significantly associated with growth traits (e.g., body length, circumference of cannon bone) in the large group of 1366 individuals in Shaanbei white cashmere goats. We found that the body length of the individuals with II (n = 571) genotype had better phenotypes than those with DD (n = 118) and ID (n = 650) genotypes. These results have direct guiding significance for goat breeding in the future and provide a new idea for studying the characteristics and functions of CMTM2 gene in goats.
Collapse
|
4
|
Chen W, Geng SL, Song Z, Li YJ, Wang H, Cao JY. Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2019; 75:1258-1269. [PMID: 30324758 DOI: 10.1002/ps.5238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Diapause is the arrest of the development of insects and can be used for the development of effective agricultural pest management strategies. Heat shock protein 70 (Hsp70) is reported to be up-regulated during diapause to maintain survival in some insect species. However, its regulatory mechanism is unknown. RESULTS Expression of hsp70 in Helicoverpa armigera was found to be up-regulated in diapause pupal brains. To elucidate the molecular regulatory mechanisms of hsp70, we focused our attention on its transcription factor, heat shock factor 1 (HSF1). Four alternative splicing variants of HSF1 from pupal brains of H. armigera were identified, and subcellular localization analysis indicated that these variants were exclusively expressed in the nucleus. Real-time PCR analysis showed that all of these variants were up-regulated in diapause pupal brains, and their expression patterns were consistent with that of hsp70. Finally, promoter activity assay and Western blotting detection demonstrated that hsp70 was activated and up-regulated by these variants. CONCLUSION Expression of hsp70 in H. armigera during diapause is regulated by multiple alternatively spliced isoforms of HSF1. The results of this study may provide important information for understanding the regulatory mechanisms of hsps during insect diapause. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shao-Lei Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Song
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Juan Li
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Medicine, Beijing City University, Beijing, China
| | - Jian-Yun Cao
- School of Economics and Trade, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Zhang S, Xu H, Kang Z, Cai H, Dang R, Lei C, Chen H, Guo X, Lan X. Bovine pituitary homeobox 2 (PITX2): mRNA expression profiles of different alternatively spliced variants and association analyses with growth traits. Gene 2018; 669:1-7. [DOI: 10.1016/j.gene.2018.05.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/12/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
|
6
|
Wu XF, Liu Y, Gao CF, Chen XZ, Zhang XP, Li WY. Novel alternative splicing variants of <i>ACOX1</i> and their differential expression patterns in goats. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-59-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract. As the first and rate-limiting enzyme of the peroxisomal β-oxidation
pathway, acyl-coenzyme A oxidase 1 (ACOX1), which is regulated by peroxisome
proliferator-activated alfa (PPARα), is vital for fatty acid
oxidation and deposition, especially in the lipid metabolism of very
long-chain fatty acids. Alternative splicing events of ACOX1 have been
detected in rodents, Nile tilapia, zebra fish and humans but not in goats.
Herein, we identified a novel splice variant of the ACOX1 gene,
which was designated as ACOX1-SV1, in addition to the complete transcript,
ACOX1, in goats. The length of the ACOX1-SV1 coding sequence was 1983 bp,
which presented a novel exon 2 variation owing to alternative 5′-splice
site selection in exon 2 and partial intron 1, compared to that in ACOX1. The
protein sequence analysis indicated that ACOX1-SV1 was conserved across
different species. Reverse-transcription quantitative real-time polymerase
chain reaction (RT-qPCR) analysis showed that these two isoforms were
expressed spatially and differently in different tissue types. ACOX1 and
ACOX1-SV1 were expressed at high levels in liver, spleen, brain and adipose
tissue in kid goats, and they were abundantly expressed in the fat, liver and
spleen of adults. Interestingly, whether in kids or in adults, in fat, the
mRNA level of ACOX1 was considerably higher than that of ACOX1-SV1. In
contrast, in the liver, the expression of ACOX1-SV1 was considerably higher
than that of ACOX1. This differential expression patterns showed the
existence of a tissue-dependent splice regulation. These novel findings for
ACOX1 should provide new insights for further studies on the function of
ACOX1 and its variants that should aid in the breeding of goats with improved
meat quality.
Collapse
|
7
|
Identification of two novel chicken GPR133 variants and their expression in different tissues. Funct Integr Genomics 2017; 17:687-696. [DOI: 10.1007/s10142-017-0564-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022]
|
8
|
Yu S, Xia M, Alsiddig MA, Liu H, Wei W, Chen J. Molecular cloning, alternative splicing and mRNA expression analysis of MAGI1 and its correlation with laying performance in geese. Br Poult Sci 2017; 58:158-165. [DOI: 10.1080/00071668.2016.1268251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
- College of Life Science, Leshan Normal University, Sichuan, PR China
| | - M. Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - M. A. Alsiddig
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - H. Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - W. Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| | - J. Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
9
|
Yu S, Wei W, Xia M, Jiang Z, He D, Li Z, Han H, Chu W, Liu H, Chen J. Molecular characterization, alternative splicing and expression analysis ofACSF2and its correlation with egg-laying performance in geese. Anim Genet 2016; 47:451-62. [DOI: 10.1111/age.12435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 01/07/2023]
Affiliation(s)
- S. Yu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Wei
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - M. Xia
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Jiang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - D. He
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Z. Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Han
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - W. Chu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - H. Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - J. Chen
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
10
|
Zhang S, Wu X, Pan C, Lei C, Dang R, Chen H, Lan X. Identification of novel isoforms of dairy goat EEF1D and their mRNA expression characterization. Gene 2016; 581:14-20. [PMID: 26794801 DOI: 10.1016/j.gene.2016.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 12/21/2015] [Accepted: 01/11/2016] [Indexed: 11/26/2022]
Abstract
Eukaryotic translation elongation factor 1 delta (EEF1D) gene encodes guanine nucleotide exchange protein eEF1Bδ, which participates in the eukaryotic protein synthesis, and plays important roles in regulating cell cycling and milk production. This study firstly focused on detecting the isoforms of dairy goat EEF1D gene and their mRNA expression characterization. Herein, two novel isoforms, EEF1Da and EEF1Dc, were identified in dairy goat. The entire coding sequences of EEF1Da and EEF1Dc isoforms were 843bp and 267bp in length, respectively. Goat EEF1Da had complete conserved domains of elongation factor 1 (EF1) family, and the evolution of goat EEF1Da isoform was agreed with the evolution of species. Expression pattern analysis of different isoforms revealed relatively ubiquitous expression of EEF1D and EEF1Da. While EEF1Dc only expressed in heart, lung, kidney, adipose and muscle. Combining with the analysis results of cloning, qRT-PCR and bioinformatics, EEF1Da is the major alternative splicing form of EEF1D gene. Interestingly, qRT-PCR result showed that the highest expression of EEF1D was in adipose, which is the major component of mammary. This result was consistent with the early research that EEF1D expressed highly in the mammary, which indicated that EEF1D played a potential key role in regulating adipose development and milk production. All these findings would provide a foundation for the further research of EEF1D gene and development of dairy goat industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Xianfeng Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ruihua Dang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Identification of novel alternative splicing transcript and expression analysis of bovine TMEM95 gene. Gene 2015; 575:531-536. [PMID: 26385321 DOI: 10.1016/j.gene.2015.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/30/2015] [Accepted: 09/14/2015] [Indexed: 01/15/2023]
Abstract
Transmembrane protein 95 (TMEM95) is closely related to male reproductive performance in cattle, but does not affect semen quality. Alternative splicing plays an important role in regulating biological function as well as in generating proteomic and functional diversity in metazoan organisms. Thus, the aim of this study was to clone and identify transcripts of the TMEM95 gene in cattle using RT-PCR, characterize them via bioinformatics analysis, and detect their expression patterns using qRT-PCR. Two transcripts of TMEM95 were identified in cattle, including TMEM95-SV1 and TMEM95-SV2. Bioinformatics predicted that TMEM95-SV1 has a leucine-rich repeat C-terminal domain and a Pfam: IZUMO. These regions are closely related to protein interactions and the acrosome reaction, respectively. Interestingly, the two transcripts were exclusively expressed in the testes and brain in male fetus cattle, and TMEM95-SV1 was expressed in the brain at significantly higher levels than in the testis (P<0.05, 4.06-fold) and TMEM95-SV2 in the brain (P<0.05, 4.95-fold). These findings enrich the understanding of the TMEM95 gene function and benefit for enhancing male reproduction in cattle industry.
Collapse
|
12
|
Zhang X, Li M, Wu X, Pan C, Lei C, Chen H, Lan X. Novel splice isoforms of dairy goat DBC1 and their diverse mRNA expression profiles. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|