1
|
Wang J, Gao X, Gao P, Liu J. A Cross-Sectional Study on the Relationship Among Cytokines, 5-HT2A Receptor Polymorphisms, and Sleep Quality of Non-manual Workers in Xinjiang, China. Front Psychiatry 2022; 13:777566. [PMID: 35463508 PMCID: PMC9019505 DOI: 10.3389/fpsyt.2022.777566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studies have shown that cytokine activity changes during the sleep-wake process, suggesting that inflammatory factors may be involved in a mechanism affecting sleep quality. Furthermore, the serotonergic system is also one of the essential components of airway relaxation during sleep, especially the serotonin 2A receptor (5-HTR2A) type that plays an important role in the sleep-wake process. Therefore, this research aimed to investigate the effects of cytokines and 5-HTR2A polymorphisms on sleep quality in non-manual workers in Urumqi, Xinjiang in order to explore the relationship between the three. METHODS This study used a cluster sampling method to randomly select non-manual workers who worked in Urumqi, Xinjiang for at least 1 year. From July 2016 and December 2017, this study recruited 1,500 non-manual workers for physical examination in the First Affiliated Hospital of Xinjiang Medical University. According to the inclusion and exclusion criteria, 1,329 non-manual workers were finally included in the questionnaire study. It used the Pittsburgh Sleep Quality Index questionnaire to assess sleep quality. Moreover, another 15% of respondents were randomly selected as the experimental study group. The polymerase chain reaction restriction fragment length polymorphism was used to detect 5-HTR2A gene genotypes. Simultaneously, the cytokine (IL-1β, IL-2, IL-6, and TNF-α) content was evaluated using an enzyme-linked immunoassay. RESULTS The results showed that among the 1,329 respondents, 870 had sleep quality problems, and the detection rate was 65.46%. The distribution of -1438G/A genotypes in the 5-HTR2A gene was significantly different among different sleep quality groups (p < 0.05), with no statistical significance present when comparing to T102C (p > 0.05). Logistic regression analysis showed that the AG [odds ratio (OR) = 2.771, 95% confidence interval (CI): 1.054-7.287] and GG (OR = 4.037, 95% CI: 1.244-13.105) genotypes at -1438G/A loci were both associated with poor sleep quality and were thus considered the susceptibility genotypes for sleep problems. Furthermore, IL-1β was shown to be a protective factor for sleep quality (OR = 0.949, 95% CI: 0.925-0.974). The interaction results showed that AG × IL-1β (OR = 0.952, 95% CI: 0.918-0.987) was associated with a lower risk of sleep problems than AA × IL-1β. CONCLUSION Cytokines and 5-HTR2A polymorphisms not only have independent effects on sleep but also may have cumulative effects. Therefore, it is necessary to further explore the related mechanisms affecting sleep quality to improve the sleep quality of non-manual workers.
Collapse
Affiliation(s)
- Juan Wang
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Pengcheng Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jiwen Liu
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Yi M, Tan Y, Pi Y, Zhou Y, Fei Q, Zhao W, Zhang Y. Variants of candidate genes associated with the risk of obstructive sleep apnea. Eur J Clin Invest 2022; 52:e13673. [PMID: 34435353 DOI: 10.1111/eci.13673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND The researches on the associations between different candidate genes and obstructive sleep apnea (OSA) are inconsistent. Here, we performed a comprehensive qualitative and quantitative analysis to estimate the contribution of variants from candidate genes to the risk of OSA. METHODS Qualitative analysis was conducted to find the relationships for all included genes. Then, quantitative analysis of both allele models and genotype models was applied to evaluate the risk variants for OSA. Furthermore, a similar analysis was performed in different ethnic groups. RESULTS We included 152 publications containing 75 genes for qualitative analysis. Among them, we included 93 articles containing 28 variants from 16 genes for quantitative analysis. Through allele models, we found 10 risk variants for OSA (rs1801133 of MTHFR, ɛ4 of ApoE, -1438G/A of 5-HT2A, -308G/A of TNF-α, Pro1019Pro of LEPR, rs1130864 and rs2794521 of CRP, D/I of ACE, LPR and VNTR of 5-HTT) with the ORs of 1.21-2.07 in global population. We found that the variant of ɛ2 of ApoE could uniquely decrease the risk of OSA in the East Asian subgroup, while the other 6 variants, including ɛ4 in ApoE, -308G/A in TNF-α, Pro1019Pro in LEPR, D/I in ACE, LPR and VNTR in 5-HTT, could increase the risk of OSA. As for the European subpopulation, we only found that -308G/A in TNF-α could increase the risk for OSA. CONCLUSIONS Eleven variants from the candidate genes are associated with the risk of OSA, which also show ethnicity differences in East Asian and European subgroups.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuze Pi
- School of Life Sciences, Central South University, Changsha, China
| | - Yicen Zhou
- School of Life Sciences, Central South University, Changsha, China
| | - Quanming Fei
- Xiangya Medical School, Central South University, Changsha, China
| | - Wangcheng Zhao
- Xiangya Medical School, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Pinilla L, Barbé F, de Gonzalo-Calvo D. MicroRNAs to guide medical decision-making in obstructive sleep apnea: A review. Sleep Med Rev 2021; 59:101458. [PMID: 33582532 DOI: 10.1016/j.smrv.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea (OSA) is a common and frequently underdiagnosed sleep disorder tightly associated with a wide range of morbidities and an elevated risk of the main causes of mortality. This condition represents a major public health concern due to its increasing worldwide prevalence and its serious pathological consequences. Current clinical guidelines support the importance of effective diagnosis and treatment of OSA and emphasize the unmet need for biomarkers to guide medical decision-making. In recent years, the noncoding transcriptome has emerged as a new opportunity for biomarker discovery. In this review, we provide a brief overview of the current understanding of noncoding RNAs, specifically microRNAs (miRNAs). Then, we carefully address the potential role of miRNAs as novel indicators for the management of both pediatric and adult OSA, highlighting their translational applicability, particularly for diagnosis and therapy allocation. Finally, we identify the gaps in the research state-of-art, discuss current methodological and conceptual limitations and propose future key steps and perspectives for the incorporation of miRNAs into routine clinical practice.
Collapse
Affiliation(s)
- Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G. Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
5
|
Epigenetics: A Potential Mechanism Involved in the Pathogenesis of Various Adverse Consequences of Obstructive Sleep Apnea. Int J Mol Sci 2019; 20:ijms20122937. [PMID: 31208080 PMCID: PMC6627863 DOI: 10.3390/ijms20122937] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epigenetics is defined as the heritable phenotypic changes which do not involve alterations in the DNA sequence, including histone modifications, non-coding RNAs, and DNA methylation. Recently, much attention has been paid to the role of hypoxia-mediated epigenetic regulation in cancer, pulmonary hypertension, adaptation to high altitude, and cardiorenal disease. In contrast to sustained hypoxia, chronic intermittent hypoxia with re-oxygenation (IHR) plays a major role in the pathogenesis of various adverse consequences of obstructive sleep apnea (OSA), resembling ischemia re-perfusion injury. Nevertheless, the role of epigenetics in the pathogenesis of OSA is currently underexplored. This review proposes that epigenetic processes are involved in the development of various adverse consequences of OSA by influencing adaptive potential and phenotypic variability under conditions of chronic IHR. Improved understanding of the interaction between genetic and environmental factors through epigenetic regulations holds great value to give deeper insight into the mechanisms underlying IHR-related low-grade inflammation, oxidative stress, and sympathetic hyperactivity, and clarify their implications for biomedical research.
Collapse
|
6
|
Kalashnikova TP, Anisimov GV, Yastrebova AV, Starikova NL. [Etiopathogenesis of obstructive sleep apnoea and its consequences in the children]. Vestn Otorinolaringol 2018; 83:79-83. [PMID: 30412183 DOI: 10.17116/otorino20188305179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article presents the modern view of etiology of the obstructive sleep apnoea/hypopnoea syndrome (OAHSS) in the children taking into consideration the ontogenetic stage and the principal mechanisms of its formation including the short-term and long-term consequences of sleep apnoea with special reference to the pathogenetic commonness of OAHSS with endothelial dysfunction, metabolic syndrome, cardiac disorders, and systemic chronic inflammation. The role of ENT diseases in the children with obstructive sleep apnoea is discussed. The results of genetic studies of the processes influencing the formation of the risk of development of sleep apnoea/hypopnoea syndrome and its outcomes in the children are discussed.
Collapse
Affiliation(s)
- T P Kalashnikova
- V.P. Pervushin Department of Neurology, Academician E.A. Vagner Perm State Medical University, Ministry of Health of the Russian Federation, Perm, Russia
| | - G V Anisimov
- The First Medico-Pedagogical Centre 'Lingva Bona', Perm, Russia
| | - A V Yastrebova
- V.P. Pervushin Department of Neurology, Academician E.A. Vagner Perm State Medical University, Ministry of Health of the Russian Federation, Perm, Russia
| | - N L Starikova
- Department of Neurology, Faculty of Advanced Training and Professional Retraining of Specialists with the course of neurorehabitology, Academician E.A. Vagner Perm State Medical University, Ministry of Health of the Russian Federation, Perm, Russia
| |
Collapse
|
7
|
Gkouskou K, Vlastos IM, Chaniotis D, Markaki A, Choulakis K, Prokopakis E. Nutrigenetic genotyping study in relation to Sleep Apnea Clinical Score. Sleep Breath 2018; 23:659-663. [DOI: 10.1007/s11325-018-1742-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
8
|
Relationship between Job Stress and 5-HT2A Receptor Polymorphisms on Self-Reported Sleep Quality in Physicians in Urumqi (Xinjiang, China): A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15051034. [PMID: 29883419 PMCID: PMC5982073 DOI: 10.3390/ijerph15051034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023]
Abstract
The serotonin receptor (5-HTR) plays a key role in sleep quality regulation. Job-related stress is an important factor that influences sleep quality. However, few reports on the interaction between 5-HTR2A polymorphisms and job stress, and how they may impact upon sleep quality are available. Therefore this study investigated the effects of job stress, 5-HTR2A polymorphisms, and their interaction on sleep quality, in physicians. Using a two-stage stratified sampling method, 918 participants were initially invited to participate in the study. After screening for study inclusion and exclusion criteria, 504 subjects were eventually included in the study. Job stress and sleep quality were assessed using the Job Stress Survey (JSS) and Pittsburgh Sleep Quality Index (PSQI), respectively. The 5-HTR2A receptor gene polymorphisms T102C and -1438G/A of were determined using polymerase chain reaction-restriction fragment length polymorphism. Job stress was significantly associated with sleep quality. High levels of job stress were linked to a higher risk of poor sleep quality compared to low or moderate levels [odds ratio (OR) = 2.909, 95% confidence interval (CI): 1.697–4.986]. High levels of stress may reduce subjects’ sleep quality, leading to an increase the likelihood of sleep disturbances and subsequent daytime dysfunction. The 5-HTR2A receptor gene polymorphism T102C was not significantly associated with sleep quality in this study, however, the -1438G/A polymorphism was significantly associated with sleep quality. The GG genotype of the -1438G/A polymorphism was linked to poorer sleep quality. When compared with subjects with low job-related stress levels×AG/AA genotype (OR = 2.106, 95% CI: 1.278–3.471), physicians with high job-related stress levels×GG genotype had a higher risk of experiencing poor sleep quality (OR = 13.400, 95% CI: 3.143–57.137). The findings of our study indicate that job stress and 5-HTR2A receptor gene polymorphisms are associated with sleep quality in physicians. Subjects with high job stress level or/and the -1438G/A GG genotype were more likely to report poor sleep quality, and furthermore, their combination effect on sleep quality was higher than their independent effects, so it may be suggested that job-related stress and genes have a cumulative effect on sleep quality; that is, stress can increase the risk of poor sleep quality, but this effect is worse in a group of people with specific gene polymorphisms.
Collapse
|
9
|
Wang H, Cade BE, Chen H, Gleason KJ, Saxena R, Feng T, Larkin EK, Vasan RS, Lin H, Patel SR, Tracy RP, Liu Y, Gottlieb DJ, Below JE, Hanis CL, Petty LE, Sunyaev SR, Frazier-Wood AC, Rotter JI, Post W, Lin X, Redline S, Zhu X. Variants in angiopoietin-2 (ANGPT2) contribute to variation in nocturnal oxyhaemoglobin saturation level. Hum Mol Genet 2017; 25:5244-5253. [PMID: 27798093 DOI: 10.1093/hmg/ddw324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
Genetic determinants of sleep-disordered breathing (SDB), a common set of disorders that contribute to significant cardiovascular and neuropsychiatric morbidity, are not clear. Overnight nocturnal oxygen saturation (SaO2) is a clinically relevant and easily measured indicator of SDB severity but its genetic contribution has never been studied. Our recent study suggests nocturnal SaO2 is heritable. We performed linkage analysis, association analysis and haplotype analysis of average nocturnal oxyhaemoglobin saturation in participants in the Cleveland Family Study (CFS), followed by gene-based association and additional tests in four independent samples. Linkage analysis identified a peak (LOD = 4.29) on chromosome 8p23. Follow-up association analysis identified two haplotypes in angiopoietin-2 (ANGPT2) that significantly contributed to the variation of SaO2 (P = 8 × 10-5) and accounted for a portion of the linkage evidence. Gene-based association analysis replicated the association of ANGPT2 and nocturnal SaO2. A rare missense SNP rs200291021 in ANGPT2 was associated with serum angiopoietin-2 level (P = 1.29 × 10-4), which was associated with SaO2 (P = 0.002). Our study provides the first evidence for the association of ANGPT2, a gene previously implicated in acute lung injury syndromes, with nocturnal SaO2, suggesting that this gene has a broad range of effects on gas exchange, including influencing oxygenation during sleep.
Collapse
Affiliation(s)
- Heming Wang
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kevin J Gleason
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Center for Human Genetic Research and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Tao Feng
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ramachandran S Vasan
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA.,Framingham Heart Study, Framingham, MA
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sanjay R Patel
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Epidemiology and Prevention Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Sleep Disorders Center, VA Boston Healthcare System, Boston, MA, USA
| | - Jennifer E Below
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lauren E Petty
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shamil R Sunyaev
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wendy Post
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
Chen YC, Chen TW, Su MC, Chen CJ, Chen KD, Liou CW, Tang P, Wang TY, Chang JC, Wang CC, Lin HC, Chin CH, Huang KT, Lin MC, Hsiao CC. Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype. Sleep 2016; 39:743-55. [PMID: 26888452 DOI: 10.5665/sleep.5620] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/03/2015] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES We hypothesized that DNA methylation patterns may contribute to disease severity or the development of hypertension and excessive daytime sleepiness (EDS) in patients with obstructive sleep apnea (OSA). METHODS Illumina's (San Diego, CA, USA) DNA methylation 27-K assay was used to identify differentially methylated loci (DML). DNA methylation levels were validated by pyrosequencing. A discovery cohort of 15 patients with OSA and 6 healthy subjects, and a validation cohort of 72 patients with sleep disordered breathing (SDB). RESULTS Microarray analysis identified 636 DMLs in patients with OSA versus healthy subjects, and 327 DMLs in patients with OSA and hypertension versus those without hypertension. In the validation cohort, no significant difference in DNA methylation levels of six selected genes was found between the primary snoring subjects and OSA patients (primary outcome). However, a secondary outcome analysis showed that interleukin-1 receptor 2 (IL1R2) promoter methylation (-114 cytosine followed by guanine dinucleotide sequence [CpG] site) was decreased and IL1R2 protein levels were increased in the patients with SDB with an oxygen desaturation index > 30. Androgen receptor (AR) promoter methylation (-531 CpG site) and AR protein levels were both increased in the patients with SDB with an oxygen desaturation index > 30. Natriuretic peptide receptor 2 (NPR2) promoter methylation (-608/-618 CpG sites) were decreased, whereas levels of both NPR2 and serum C type natriuretic peptide protein were increased in the SDB patients with EDS. Speckled protein 140 (SP140) promoter methylation (-194 CpG site) was increased, and SP140 protein levels were decreased in the patients with SDB and EDS. CONCLUSIONS IL1R2 hypomethylation and AR hypermethylation may constitute an important determinant of disease severity, whereas NPR2 hypomethylation and SP140 hypermethylation may provide a biomarker for vulnerability to EDS in OSA. COMMENTARY A commentary on this article appears in this issue on page 723.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Mao-Chang Su
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Chung-Jen Chen
- Division of Rheumatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Den Chen
- Center of Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taiwan.,Bioinformatics Center, Chang Gung University, Taiwan
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Chang Gung University of Science and Technology, Chia-yi, Taiwan
| | - Hsin-Ching Lin
- Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Hung Chin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Sleep Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| |
Collapse
|
11
|
Wu W, Li Z, Tang T, Wu J, Liu F, Gu L. 5-HTR2A and IL-6 polymorphisms and obstructive sleep apnea-hypopnea syndrome. Biomed Rep 2015; 4:203-208. [PMID: 26893839 DOI: 10.3892/br.2015.558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/10/2015] [Indexed: 11/06/2022] Open
Abstract
At present, variants of the 5-hydroxytryptamine receptor 2A (5-HTR2A) and interleukin-6 (IL-6) genes may be susceptible markers to develop for obstructive sleep apnea-hypopnea syndrome (OSAHS). Therefore, the aim of the present study was to explore the potential associations between the 5-HTR2A and IL-6 single-nucleotide polymorphisms (SNPs) and OSAHS. In total there were 130 cases and 136 controls collected for genotyping of 5-HTR2A (rs6311) and IL-6 (rs1800796) SNPs. The association of these SNPs with OSAHS risk were evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) from multivariate unconditional logistic regression analyses with adjustment for gender and age. The results indicated that the genotype and allele frequencies in these two loci (rs6311 and rs1800796) were not significantly different between the cases and controls. However, carrying the 'C' allele of rs6311 has a protective effect against OSAHS via the gender-specific comparison (P=0.0409; OR, 1.744; 95% CI, 1.021-2.978). The 'G' allele and 'CG' genotype distribution of rs1800796, and 'C' allele and 'CT' genotype distribution of rs6311 have significant differences between the mild and moderate group (P<0.05). Similarly, the genotype distribution of rs6311 has differences between mild and severe cases (P=0.0026). The current research demonstrated that variants of rs6311 have an association with OSAHS in males. Additionally, polymorphisms of rs6311 and rs1800796 have relevance to the severity of OSAHS.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhijun Li
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Tingyu Tang
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jinyan Wu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Fang Liu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Liang Gu
- Department of Respiratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
12
|
Lan F, Cao C, Liu J, Li W. Obstructive sleep apnea syndrome susceptible genes in the Chinese population: a meta-analysis of 21 case-control studies. Sleep Breath 2015; 19:1441-8. [PMID: 25917830 DOI: 10.1007/s11325-015-1176-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Numbers of single nucleotide polymorphisms (SNPs) were identified as risk factors for obstructive sleep apnea syndrome (OSAS) in the Chinese population; however, published articles drew incompatible or even contradictory results. OBJECTIVE The aim of this study was to investigate the susceptible SNPs and risk of OSAS in the Chinese population. METHODS We conducted a meta-analysis of seven polymorphisms and risk of OSAS based on 21 case-control studies. RESULTS The results of our study showed that tumor necrosis factor-α (TNF-α) -308 G/A (OR = 3.70, 95 % CI = 1.39-9.83), gene-linked polymorphic region (LPR) (OR = 0.57, 95 % CI = 0.41-0.79), and variable number tandem repeat (VNTR) of the 5-hydroxytryptamine transporter gene (5-HTT) (OR = 3.44, 95 % CI = 1.49-7.95) polymorphisms were associated with OSAS risk in the Chinese population, while there was no significant association between 5-hydroxytryptamine 2A receptor (5-HTR2A) 102C/T, 5-HTR2A A1438G, angiotensin-converting enzyme (ACE) insertion (I)/deletion (D), or leptin receptor (LEPR)-Gln 223Arg polymorphism and risk of OSAS in the Chinese population. CONCLUSIONS Our study demonstrated that TNF-α 308 G/A, 5-HTT LPR, and 5-HTT-VNTR polymorphisms were associated with OSAS risk, whereas little association was observed between 5-HTR2A 102C/T, 5-HTR2A A1438G, ACE I/D, or LEPR-Gln 223Arg polymorphism and risk of OSAS in the Chinese population.
Collapse
Affiliation(s)
- Fen Lan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China.,Department of Respiratory Medicine, Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, 315020, China
| | - Jinkai Liu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, College of Medicine and Institute of Respiratory Diseases, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
13
|
Comparisons of thyroid hormone, intelligence, attention, and quality of life in children with obstructive sleep apnea hypopnea syndrome before and after endoscopic adenoidectomy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:523716. [PMID: 25654109 PMCID: PMC4310307 DOI: 10.1155/2015/523716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Objective. The aim of this study was to compare the differences in thyroid hormone, intelligence, attention, and quality of life (QoL) of children with obstructive sleep apnea hypopnea syndrome (OSAHS) before and after endoscopic adenoidectomy. Method. A total of 35 OSAHS children (21 males and 14 females with a mean age of 6.81 ± 1.08 years) were included in this study for analyzing the levels of thyroid hormone, intelligence, attention, and QoL. There were 22 children underwent endoscopic adenoidectomy with bilateral tonsillectomy (BT), while the other 13 children who underwent endoscopic adenoidectomy without bilateral tonsillectomy without BT. Results. Our results revealed no significant difference in serum free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH) levels in OSAHS children before and after endoscopic adenoidectomy (all P > 0.05). However, there were significant differences in full-scale intelligence quotient (FIQ) (92.45 ± 5.88 versus 106.23 ± 7.39, P < 0.001), verbal intelligence quotient (VIQ) (94.17 ± 15.01 versus 103.91 ± 9.74, P = 0.006), and performance intelligence quotient (PIQ) (94.12 ± 11.04 versus 104.31 ± 10.05, P = 0.001), attention (98.48 ± 8.74 versus 106.87 ± 8.58, P < 0.001), and total OSA-18 scores (87.62 ± 17.15 versus 46.61 ± 10.15, P < 0.001) between before and after endoscopic adenoidectomy in OSAHS children. Conclusion. Our findings provided evidence that the intelligence, attention, and QoL of OSAHS children may be significantly improved after endoscopic adenoidectomy.
Collapse
|
14
|
Oral appliance effectively reverses Muller’s maneuver-induced upper airway collapsibility in obstructive sleep apnea and hypopnea syndrome. Sleep Breath 2014; 19:213-20. [DOI: 10.1007/s11325-014-0994-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
|
15
|
Xu H, Guan J, Yi H, Yin S. A systematic review and meta-analysis of the association between serotonergic gene polymorphisms and obstructive sleep apnea syndrome. PLoS One 2014; 9:e86460. [PMID: 24475124 PMCID: PMC3903532 DOI: 10.1371/journal.pone.0086460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/13/2013] [Indexed: 01/18/2023] Open
Abstract
Background 5-Hydroxytryptamine receptor (5-HTR) and 5-hydroxytryptamine transporter (5-HTT) gene polymorphisms have been reported to be associated with susceptibility to obstructive sleep apnea syndrome (OSAS). The associations, derived from sporadic, inconsistent, small-sample-size studies, need to be evaluated further in a meta-analysis. Methods Relevant studies were identified by searching PubMed, Embase, The Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and Weipu. Eligible data were extracted from each included study. Odds ratios (ORs) were calculated using a fixed-effects or a random-effects model. The ORs and 95% confidence interval (CI) were used to assess the strength of the association between serotonergic gene polymorphisms and OSAS in the dominant and recessive models, as well as alleles. The Q statistic was used to evaluate homogeneity and Begg’s test was used to assess publication bias. Results Eight studies were finally included in the meta-analysis of the association between 5-HTR2A gene variants (including 102T/C and 1438G/A), 5-HTT gene polymorphisms (including 5-HTT gene-linked promoter region (5-HTTLRP), and serotonin transporter intron 2 variable number tandem repeat (STin2VNTR) and OSAS risk. The G allele of 5-HTR2A 1438G/A, long 5-HTTLPR, and 10-tandem-repeats STin2VNTR were shown to increase OSAS susceptibility, with ORs of 2.33 (A vs. G, 95% CI 1.48–3.66), 1.24 (L vs. S, 95% CI: 1.04–1.49), and 2.87 (10 vs. 12, 95% CI: 1.38–5.97), respectively. These significant differences were determined in both dominant and recessive models. Of the 5-HTR2A 1438G/A gene polymorphism, the AA genotype increased the OSAS risk, with an OR of 4.21 (95% CI: 2.83–6.25) in a recessive model in male OSAS patients, but no significant association was found in females. Conclusions Our meta-analysis demonstrated that polymorphisms in the 5-HTR2A 1438G/A and 5-HTT genes contributed to susceptibility to OSAS. The A allele of the 1438G/A gene polymorphism is predominantly distributed in males and increased the OSAS risk significantly.
Collapse
Affiliation(s)
- Huajun Xu
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JG); (SY)
| | - Hongliang Yi
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (JG); (SY)
| |
Collapse
|