1
|
Ehtesham N, Habibi Kavashkohie MR, Mazhari SA, Azhdari S, Ranjbar H, Mosallaei M, Hazrati E, Behroozi J. DNA methylation alterations in systemic lupus erythematosus: A systematic review of case-control studies. Lupus 2023; 32:363-379. [PMID: 36573333 DOI: 10.1177/09612033221148099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Traditionally, the diagnosis and monitoring of disease activity in systemic lupus erythematosus (SLE) are contingent upon clinical manifestations and serological markers. However, researchers are struggling to find biomarkers with higher sensitivity and specificity. DNA methylation has been the most studied epigenetic feature in SLE. So, in this study, we performed a systematic review of studies about DNA methylation alterations in SLE patients compared to healthy controls. METHODS By searching PubMed, Scopus, and Google Scholar up to July 2022, all case-control studies in which DNA methylation of specific genes was assessed by a non-high-throughput technique and passed the quality of bias assessment were included. RESULTS In total, 44 eligible studies underwent a data extraction process. In all, 3471 SLE patients and 1028 healthy individuals were included. Among the studies that reported the patients' gender (n = 2853), 89.41% were female and 10.59% were male. Forty studies have been conducted on adult patients. The number of works on fractionated and unfractionated blood cells was almost equal. In this regard, 22 studies were conducted on whole blood or peripheral blood mononuclear cells and two studies on unfractionated white blood cells. Sorted blood cells were biological sources in 20 studies. The most investigated gene was IFI44L. Sensitivity, specificity, and diagnostic power of methylation levels were only reported for IFI44L in five studies. The most employed methylation profiling method was bisulfite sequencing polymerase chain reaction. The correlation between methylation patterns and clinical parameters was explored in 22 studies, which of them 16 publications displayed a remarkable association between DNA methylation status and clinical indices. CONCLUSIONS The methylation status of some genes especially IFI44L, FOXP3, and MX1 has been suggested as promising SLE biomarkers. However, given the conflicting findings between studies because of potential confounders such as different sample types, methylation profiling methods, and ethnicity as well as shared DNA methylation patterns of SLE and other autoimmune diseases, DNA methylation biomarkers are currently not reliable diagnostic biomarkers and do not represent surrogate markers of SLE disease activity. Future investigations on a larger scale with the discarding of limitations of previous studies would probably lead to a consensus.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | | | - Seyed Amirhossein Mazhari
- Department of Medical Biology and Genetics, 217747Azerbaijan Medical University (AMU), Baku, Azerbaijan
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, 394237Bam University of Medical Sciences, Bam, Iran
| | - Hamta Ranjbar
- Student Research Committee, 48463Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Mosallaei
- Student Research Committee, 48533University of Social Welfare and Rehabilitation Science, Tehran, Iran.,Department of Genetics and Molecular Biology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Hazrati
- Department of Anesthesiology and Intensive Care, Medical Faculty, 162996AJA University of Medical Sciences, Tehran, Iran
| | - Javad Behroozi
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, 162996AJA University of Medical Sciences, Tehran, Iran.,Research Center for Cancer Screening and Epidemiology, 162996AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Huang YC, Lai IW, Chang HC. The Association of MTHFR C677T and MTR A2756G Gene Polymorphisms With the Risk of Systemic Lupus Erythematosus: A Systematic Review and Meta-analysis. J Clin Rheumatol 2021; 27:e580-e582. [PMID: 31868834 DOI: 10.1097/rhu.0000000000001240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - I-Wen Lai
- Department of Anesthesiology, Wan Fang Hospital
| | - Hua-Ching Chang
- Department of Dermatology, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Dhiman P, Pillai RR, Wilson AB, Premkumar N, Bharadwaj B, Veena P, Rajendiran S. Genetic polymorphisms of vitamin B12 and folate transporter proteins and depression in postpartum period: A case-control study. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
5
|
Abstract
BACKGROUND The relationship between MTHFR (5, 10-methylene tetrahydrofolate reductase) gene polymorphisms and Systemic Lupus Erythematosus (SLE) has been wildly studied, but the results are still conflicting. Therefore, the purpose of this meta and pooled analysis was to identify the role of the MTHFR SNP (single nucleotide polymorphism, rs1801133) in SLE in a large sample of subjects and to assess the risk of SLE. METHODS Data were collected from EMBASE, PubMed and China National Knowledge Infrastructure from inception to August, 2019. Summary odds ratio (OR) with 95% confidence interval (CI) was applied to assess the association. Subgroup and sensitivity analysis were performed to assess the potential sources of heterogeneity of the pooled estimation. RESULTS We identified seven eligible studies involving 882 cases and 991 controls. MTHFR rs1801133 T carrier was significantly associated with increased risk of SLE when comparing to C allele [ORs were 1.766 (1.014-3.075) for T carrier vs CC, P = .04]. Furthermore, the results of the subgroup analysis by genotyping methods suggested that T allele significantly contributed to the risk of SLE for both by polymerase chain reaction-TaqMan (PCR-TaqMan) [10.111 (2.634-38.813) for TT vs CC, 3.467 (1.324-9.078) for CT vs CC and 3.744 (1.143-12.264) for TT vs C carrier]. Also the results of the subgroup analysis by ethnicity suggested that T allele significantly contributed to the risk of SLE for Asians [9.679 (4.444-21.082) for TT vs CC, 5.866 (3.021-11.389) for T carrier vs CC and 8.052 (3.861-16.795) for TT vs C carrier]. CONCLUSION This cumulative meta-analysis showed that the MTHFR SNP (rs1801133) contributed to susceptibility of SLE. However, more multicentre well-designed case-control studies and larger sample sizes are exceedingly required to validate our findings in the future.
Collapse
Affiliation(s)
- Huang-yan Zhou
- Department of blood transfusion, Jiangxi Cancer Hospital
| | - Min Yuan
- Department of Neurology, Jiangxi provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Scotto L, Kinahan C, Casadei B, Mangone M, Douglass E, Murty VV, Marchi E, Ma H, George C, Montanari F, Califano A, O'Connor OA. Generation of pralatrexate resistant T-cell lymphoma lines reveals two patterns of acquired drug resistance that is overcome with epigenetic modifiers. Genes Chromosomes Cancer 2020; 59:639-651. [PMID: 32614991 PMCID: PMC7540375 DOI: 10.1002/gcc.22884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
While pralatrexate (PDX) has been successfully developed for the treatment of T-cell lymphoma, the mechanistic basis for its T-cell selectivity and acquired resistance remains elusive. In an effort to potentially identify synergistic combinations that might circumnavigate or delay acquired PDX resistance, we generated resistant cells lines over a broad concentration range. PDX-resistant cell lines H9-12 and H9-200 were developed, each exhibiting an IC50 of 35 and over 1000 nM, respectively. These lines were established in vitro from parental H9 cells. Expression analysis of the proteins known to be important determinants of antifolate pharmacology revealed increase expression of dihydrofolate reductase (DHFR) due to gene amplification, and reduced folate carrier1 downregulation, as the putative mechanisms of resistance in H9-12 and H9-200 cells. Cross resistance was only seen with methotrexate but not with romidepsin, azacitidine (AZA), decitabine, gemcitabine, doxorubicin, or bortezomib. Resistance to PDX was reversed by pretreatment with hypomethylating agents in a concentration-dependent fashion. Comparison of gene expression profiles of parental and resistant cell lines confirmed markedly different patterns of gene expression, and identified the dual specificity phosphatase four (DUSP4) as one of the molecular target of PDX activity. Reduced STAT5 phosphorylation following exposure to PDX was observed in the H9 but not in the H9-12 and H9-200 cells. These data suggest that combination with hypomethylating agents could be potent, and that DUSP4 and STAT5 could represent putative biomarkers of PDX activity.
Collapse
Affiliation(s)
- Luigi Scotto
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Cristina Kinahan
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Beatrice Casadei
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Michael Mangone
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Eugene Douglass
- Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Enrica Marchi
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Helen Ma
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Changchun George
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Francesca Montanari
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA.,Division of Experimental Therapeutics, Columbia University Medical Center, New York, New York, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
7
|
The status of FOXP3 gene methylation in pediatric systemic lupus erythematosus. Allergol Immunopathol (Madr) 2020; 48:332-338. [PMID: 32475613 DOI: 10.1016/j.aller.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease caused by interaction of genetic, epigenetic, and environmental factors. One of the important epigenetic factors in SLE would be methylation of immune-related genes, such as FOXP3, which plays a role in activating the regulation and also the function of T cells. To date, the relationship between levels of serum bio-markers and the susceptibility to lupus in children has not been well-understood. In this study, the involvement of etiologic factors, such as methylation of FOXP3 gene, was investigated in children with SLE. METHOD Twenty-four female children with SLE and 25 female healthy subjects without any history of autoimmune and inflammatory diseases were included in this study. Blood samples were obtained and DNA was extracted from the blood cells. The bisulphite method was used to convert the DNA using the MethylEdge™ Bisulfite Conversion System Kit. Then, methylation of the gene was investigated using Real Time methylation specific PCR. RESULTS The FOXP3 DNA methylation in patients and healthy subjects was significantly different. While the median unmethylated DNA in patients was 0.57±0.43, it was 0.97±0.83 in healthy subjects (P=0.012). The Demethylation Index in patients was 0.007±0.003, significantly lower than in controls (0.014±0.013; P=0.012). CONCLUSIONS The FOXP3 gene methylation in children with SLE was significantly higher than healthy subjects, which could possibly affect the level of gene expression. Therefore, one of the causes of increased immune response in SLE can be the lower expression of FOXP3 by hypermethylation of this gene.
Collapse
|
8
|
Plasma Homocysteine and Polymorphisms of Genes Involved in Folate Metabolism Correlate with DNMT1 Gene Methylation Levels. Metabolites 2019; 9:metabo9120298. [PMID: 31817852 PMCID: PMC6950100 DOI: 10.3390/metabo9120298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) is responsible for the maintenance of DNA methylation patterns during cell division. Several human diseases are characterized by impaired DNMT1 gene methylation, but less is known about the factors that regulate DNMT1 promoter methylation levels. Dietary folates and related B-vitamins are essential micronutrients for DNA methylation processes, and we performed the present study to investigate the contribution of circulating folate, vitamin B12, homocysteine, and common polymorphisms in folate pathway genes to the DNMT1 gene methylation levels. We investigated DNMT1 gene methylation levels in peripheral blood DNA samples from 215 healthy individuals. All the DNA samples were genotyped for MTHFR 677C > T (rs1801133) and 1298A > C (rs1801131), MTRR 66A > G (rs1801394), MTR 2756A > G (rs1805087), SLC19A1 (RFC1) 80G > A (rs1051266), TYMS 28-bp tandem repeats (rs34743033) and 1494 6-bp insertion/deletion (indel) (rs34489327), DNMT3A -448A > G (rs1550117), and DNMT3B -149C > T (rs2424913) polymorphisms. Circulating homocysteine, folate, and vitamin B12 levels were available from 158 of the recruited individuals. We observed an inverse correlation between plasma homocysteine and DNMT1 methylation levels. Furthermore, both MTR rs1805087 and TYMS rs34743033 polymorphisms showed a statistically significant effect on DNMT1 methylation levels. The present study revealed several correlations between the folate metabolic pathway and DNMT1 promoter methylation that could be of relevance for those disorders characterized by altered DNA methylation.
Collapse
|
9
|
Naushad SM, Devi ARR, Hussain T, Alrokayan SA, Ramaiah MJ, Kutala VK. In silico analysis of the structural and functional implications of SLC19A1 R27H polymorphism. J Genet 2019. [DOI: 10.1007/s12041-019-1132-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, Roust LR, De Filippis EA, Mandarino LJ, Coletta DK. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics 2017; 12:254-263. [PMID: 28106509 DOI: 10.1080/15592294.2017.1281501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.
Collapse
Affiliation(s)
- Samantha E Day
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Richard L Coletta
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Joon Young Kim
- c Division of Weight Management and Wellness , Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Luis A Garcia
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Latoya E Campbell
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Tonya R Benjamin
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | - Lori R Roust
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | | | - Lawrence J Mandarino
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA
| | - Dawn K Coletta
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA.,f Department of Basic Medical Sciences , The University of Arizona College of Medicine , Phoenix , AZ , USA
| |
Collapse
|
11
|
Rupasree Y, Naushad SM, Varshaa R, Mahalakshmi GS, Kumaraswami K, Rajasekhar L, Kutala VK. Application of Various Statistical Models to Explore Gene-Gene Interactions in Folate, Xenobiotic, Toll-Like Receptor and STAT4 Pathways that Modulate Susceptibility to Systemic Lupus Erythematosus. Mol Diagn Ther 2016; 20:83-95. [PMID: 26689915 DOI: 10.1007/s40291-015-0181-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION In view of our previous studies showing an independent association of genetic polymorphisms in folate, xenobiotic, and toll-like receptor (TLR) pathways with the risk for systemic lupus erythematosus (SLE), we have developed three statistical models to delineate complex gene-gene interactions between folate, xenobiotic, TLR, and signal transducer and activator of transcription 4 (STAT4) signaling pathways in association with the molecular pathophysiology of SLE. METHODS We developed additive, multifactor dimensionality reduction (MDR), and artificial neural network (ANN) models. RESULTS The additive model, although the simplest, suggested a moderate predictability of 30 polymorphisms of these four pathways (area under the curve [AUC] 0.66). MDR analysis revealed significant gene-gene interactions among glutathione-S-transferase (GST)T1 and STAT4 (rs3821236 and rs7574865) polymorphisms, which account for moderate predictability of SLE. The MDR model for specific auto-antibodies revealed the importance of gene-gene interactions among cytochrome P450, family1, subfamily A, polypeptide 1 (CYP1A1) m1, catechol-O-methyltransferase (COMT) H108L, solute carrier family 19 (folate transporter), member 1 (SLC19A1) G80A, estrogen receptor 1 (ESR1), TLR5, 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), thymidylate synthase (TYMS). and STAT4 polymorphisms. The ANN model for disease prediction showed reasonably good predictability of SLE risk with 30 polymorphisms (AUC 0.76). These polymorphisms contribute towards the production of SSB and anti-dsDNA antibodies to the extent of 48 and 40%, respectively, while their contribution for the production of antiRNP, SSA, and anti-cardiolipin antibodies varies between 20 and 30%. CONCLUSION The current study highlighted the importance of genetic polymorphisms in folate, xenobiotic, TLR, and STAT4 signaling pathways as moderate predictors of SLE risk and delineates the molecular pathophysiology associated with these single nucleotide polymorphisms (SNPs) by demonstrating their association with specific auto-antibody production.
Collapse
Affiliation(s)
- Yedluri Rupasree
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Shaik Mohammad Naushad
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Ravi Varshaa
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India
| | | | - Konda Kumaraswami
- Department of Rheumatology, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, 500082, India
| | - Liza Rajasekhar
- Department of Rheumatology, Nizam's Institute of Medical Sciences, Panjagutta, Hyderabad, 500082, India
| | - Vijay Kumar Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India.
| |
Collapse
|
12
|
Relle M, Foehr B, Schwarting A. Epigenetic Aspects of Systemic Lupus Erythematosus. Rheumatol Ther 2015; 2:33-46. [PMID: 27747498 PMCID: PMC4883254 DOI: 10.1007/s40744-015-0014-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/31/2022] Open
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis, multiple sclerosis, autoimmune hepatitis, and inflammatory bowel disease have complex pathogeneses and the courses of events leading to these diseases are not well understood. The immune surveillance is a delicate balance between self and foreign as well as between tolerance and immune response. Exposure to certain environmental factors may impair this equilibrium, leading to autoimmune diseases, cancer, and the so-called “lifestyle diseases” such as atherosclerosis, heart attack, stroke, and obesity, among others. These external stimuli may also alter the epigenetic status quo and may trigger autoimmune diseases such as SLE in genetically susceptible individuals. This review aims to highlight the role of epigenetic (dys-)regulation in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Manfred Relle
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Bernd Foehr
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Andreas Schwarting
- Department of Medicine I, Mainz University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| |
Collapse
|
13
|
Reduced folate carrier-1 80G > A gene polymorphism is not associated with methotrexate treatment response in South Indian Tamils with rheumatoid arthritis. Clin Rheumatol 2015; 35:879-85. [DOI: 10.1007/s10067-015-2917-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/24/2015] [Accepted: 03/03/2015] [Indexed: 10/23/2022]
|
14
|
Naushad SM, Vijayalakshmi SV, Rupasree Y, Kumudini N, Sowganthika S, Naidu JV, Ramaiah MJ, Rao DN, Kutala VK. Multifactor dimensionality reduction analysis to elucidate the cross-talk between one-carbon and xenobiotic metabolic pathways in multi-disease models. Mol Biol Rep 2015; 42:1211-24. [PMID: 25648260 DOI: 10.1007/s11033-015-3856-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/28/2015] [Indexed: 01/14/2023]
Abstract
Putatively functional polymorphisms of one-carbon and xenobiotic metabolic pathways influence susceptibility for wide spectrum of diseases. The current study was aimed to explore gene-gene interactions among these two metabolic pathways in four diseases i.e. breast cancer, systemic lupus erythematosus (SLE), coronary artery disease (CAD) and Parkinson's disease (PD). Multifactor dimensionality reduction analysis was carried out on four case-control datasets. Cross-talk was observed between one-carbon and xenobiotic pathways in breast cancer (RFC 80 G>A, COMT H108L and TYMS 5'-UTR 28 bp tandem repeat) and SLE (CYP1A1 m1, MTRR 66 A>G and GSTT1). Gene-gene interactions within one-carbon metabolic pathway were observed in CAD (GCPII 1561 C>T, SHMT 1420 C>T and MTHFR 677 C>T) and PD (cSHMT 1420 C>T, MTRR 66 A>G and RFC1 80 G>A). These interaction models showed good predictability of risk for PD (The area under the receiver operating characteristic curve (C) = 0.83) and SLE (C = 0.73); and moderate predictability of risk for breast cancer (C = 0.64) and CAD (C = 0.63). Cross-talk between one-carbon and xenobiotic pathways was observed in diseases with female preponderance. Gene-gene interactions within one-carbon metabolic pathway were observed in diseases with male preponderance.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, 613401, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rupasree Y, Naushad SM, Rajasekhar L, Uma A, Kutala VK. Association of TLR4 (D299G, T399I), TLR9 -1486T>C, TIRAP S180L and TNF-α promoter (-1031, -863, -857) polymorphisms with risk for systemic lupus erythematosus among South Indians. Lupus 2014; 24:50-7. [PMID: 25182168 DOI: 10.1177/0961203314549792] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rationale of this case-control study was to explore the association of Toll-like receptor 4 (TLR4) D299G, TLR4 T399I, TLR9 -1486 T>C, TIR-domain-containing adaptor protein (TIRAP) S180 L and tumor necrosis-α (TNF-α) promoter polymorphisms with susceptibility and phenotypic heterogeneity of systemic lupus erythematosus (SLE). PCR-RFLP, real-time PCR was used for the genetic analysis and expression studies and ELISA was used for the determination of specific autoantibodies. TLR4 D299G was associated with the risk for SLE (OR: 1.57, 95% CI: 1.08-2.28), while the TNF-α (-1031, -863, -857) CCC haplotype conferred protection. TLR4 and TIRAP polymorphisms were associated with reduced expression of HLA-DR. The presence of TLR4 and TLR9 polymorphisms increases the MHC2TA expression, while TIRAP polymorphism was associated with reduced expression. TLR4 D299 G showed an inverse association with pulmonary hypertension. TLR 4 T399I and TLR9 -1486 T>C showed a positive association with seizures and photosensitivity, respectively. TIRAP S180 L showed a positive association with alopecia and malar rashes, while an inverse association with psychosis was observed. TLR4 T399I (r = 0.14, p = 0.05) and TIRAP S180 L (r = 0.15, p = 0.03) showed a positive association with anti-Ro antibodies. On the other hand, TLR9 -1486 T>C showed an inverse association with anti-La antibodies (r = -0.20, p = 0.006). To conclude, TLR4 D299G increases the risk for SLE, while TNF-α CCC haplotype reduces the risk for SLE. All these polymorphisms contribute toward phenotypic heterogeneity. TLR4 T399I, TLR9 -1486 T>C and TIRAP S180 L influence specific autoantibody production in SLE.
Collapse
Affiliation(s)
- Y Rupasree
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - S M Naushad
- School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - L Rajasekhar
- Department of Rheumatology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - A Uma
- Centre for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, India
| | - V K Kutala
- Department of Clinical Pharmacology and Therapeutics, Nizam's Institute of Medical Sciences, Hyderabad, India
| |
Collapse
|